
Accelerating the Single Cluster PHD Filter with a
GPU Implementation

Chee Sing Lee, José Franco, Jérémie Houssineau, Daniel Clark

Abstract—The SC-PHD filter is an algorithm which was
designed to solve a class of multiple object estimation problems
where it is necessary to estimate the state of a single-target
parent process, in addition to estimating the state of a multi-
object population which is conditioned on it. The filtering process
usually employs a number of particles to represent the parent
process, coupled each with a conditional PHD filter, which is
computationally burdensome. In this article, an implementation
is described which exploits the parallel nature of the filter to
obtain considerable speed-up with the help of a GPU. Several
considerations need to be taken into account to make efficient
use of the GPU, and these are also described here.

I. INTRODUCTION

Recent developments in multiple target tracking algorithms
have spurred the creation of methods which use them as
building blocks to solve more complex problems. For instance,
filters based on the finite set statistics (FISST) framework [1]
such as the PHD Filter [2] have been extended to estimate
cluster processes [3], perform distributed sensor localization
[4], parameter estimation [5], and simultaneous localization
and mapping [6], [7], among other applications.

Augmenting the sophistication of the tracking systems, how-
ever, also tends to lead to a sharp increase in computational
burden. However, interesting parallelization opportunities can
often be exploited to reduce the overall running times of the
algorithm. In particular, the Single Cluster PHD (SC-PHD)
filter is suited for tracking problems where the observed tar-
gets’ motion and evolution is dependent on some unobserved
parent state. The use of this filter has been demonstrated in
group target tracking [8], microscope drift estimation [9] and
simultaneous localization and mapping [7].

Increasing the speed of inherently parallel programs can be
achieved through the use of specialized processors, sometimes
called accelerators. Graphics Processing Units (GPU) are an
interesting type of accelerator since they specialize in carrying
out massively parallel tasks. With increased computational
needs spurred by more complex graphics intensive applica-
tions, the processing power of GPUs has quickly increased
through the years, and there has been a surge of interest
in exposing these capabilities for use in a wider range of
applications. The CUDA framework is a recent effort by
Nvidia corporation to simplify access to these capabilities in
Nvidia graphics cards for general purpose computation.

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/K014277/1 and the MOD
University Defence Research Collaboration in Signal Processing.

The authors are with the School of Engineering & Physical Sci-
ences, Heriot-Watt University, Edinburgh (e-mail: cslee@eia.udg.edu,
{jf139,jh207,D.E.Clark}@hw.ac.uk)

The purpose of this article is to provide details on an im-
plementation of the SC-PHD Filter on the CUDA framework.
In Section II, the SC-PHD Filter is described. Section III
talks about the particularities of the CUDA Framework and
what considerations must be taken when programming for it,
while Section IV details the implementation of this filter on
this architecture. Sample results are shown in Section V, and
finally the article concludes in Section VI.

II. THE SC-PHD FILTER

The PHD Filter is a multi-object estimation filter based on
Finite Set Statistics (FISST). In this framework, the multi-
object and measurement spaces are represented as random
finite sets (RFS), which implies uncertainty both in the states
of each of the targets being tracked and in the size of the
population. The filter propagates the approximation related to
the first moment, or intensity, of the multi-target Bayes filter,
which is called the Probability Hypothesis Density (PHD).
This is a function defined over the single-target state space
whose integral over a particular region gives the expected
number of targets in that region, and thus gives information
not only on the number of objects in the population but also
of their location.

An interesting class of multiple-target tracking problems
deals with tracking a population whose state is conditional
on a single-target random variable. This may be due to, for
example, the state of the sensor that observes the population
not being accurately known. The Single Cluster PHD Filter is
an extension of the PHD Filter which is designed to estimate
the state not only of the multiple object population through
a conditional PHD D̃k(y|x), but also of the parent process
on which it is conditioned. The prediction equation for the
SC-PHD filter is given by

Dk|k−1(x,y) =

∫
sk−1(x

′)πk|k−1(x|x′)D̃k|k−1(y|x′) dx′,
(1)

where sk−1 is the prior distribution of the parent state at time
k − 1, where πk|k−1 is the Markov transition density of the
parent process, and where D̃k|k−1(y|x) is the predicted PHD
of the daughter process:

D̃k|k−1(y|x) = γk|k−1(y|x)

+

∫
D̃k−1(y

′|x)pS(y′|x)π̃k|k−1(y|y′,x) dy′

with the following definitions:



γk|k−1(·|x) PHD for daughter birth process at time k,
conditioned on parent state x

D̃k−1(·|x) prior PHD of the daughter state at time k− 1,
conditioned on parent state x

pS(·|x) object survival probability, conditioned on x

π̃k|k−1(·|·,x) single-object Markov transition density for the
daughter process, conditioned on x.

The update equation, in turn, is given by

Dk|k(x,y) =
sk|k−1(x)LZk

(x)∫
sk|k−1(x′)LZk

(x′) dx′
D̃k|k(y|x),

where sk|k−1 is the predicted PHD of the parent state, where
pD(·|x) is detection probability of the daughter process given a
parent state x, and where LZk

(x) the multi-object observation
likelihood of the measurement set Zk given a parent state x,
defined by

LZk
(x) = exp

(
−
∫
pD(y|x)D̃k|k−1(y|x) dy

) ∏
z∈Zk

ηz(x),

with

ηz(x) = κk(z) +

∫
D̃k|k−1(y|x)pD(y|x)g(z|y,x) dy,

where g(·|·,x) is the single-object observation likelihood
given the parent state x and where κk is the PHD of the
measurement clutter process. The updated PHD D̃k|k(·|x) of
the daughter process is found to be

D̃k|k(y|x) = D̃k|k−1(y|x) ·[
(1− pD(y|x)) +

∑
z∈Zk

g(z|y,x)pD(y|x)
ηz(y|x)

]
.

Practical implementations of either the PHD or SC-PHD
filter require an appropriate representation for the intensity. In
this article, the focus will be on accelerating a filter equipped
with a particle representation for the distribution sk of the
parent process and a Gaussian mixture representation for the
PHD of the daughter state. To reflect the conditional relation-
ship between the parent and daughter processes, each particle
in the parent distribution is associated with its own Gaussian
Mixture (GM) representing the daughter PHD conditioned on
that particle’s trajectory. Then at any given timestep k, the
parent and daughter processes can be stated as

sk(x) =

Nk∑
i=1

ζ
(i)
k δ(x − x

(i)
k ) (2)

D
(i)
k (y|xk) =

J
(i)
k∑
j=1

w
(i,j)
k N (y, µ

(i,j)
k ,P

(i,j)
k ). (3)

Here, Nk is the number of particles in the representation
of the parent state, each with state x

(i)
k and weight ζ(i)k ,

J
(i)
k is the current number of components in the daughter

Gaussian mixture, each component having weight w(i,j)
k , mean

µ
(i,j)
k and covariance P

(i,j)
k . This representation is particularly

convenient if the motion and measurement models are linear
and Gaussian, or can be reasonably linearized as such, since
it simplifies the obtention of the predicted and updated forms
for the Gaussian mixture. To obtain the equation for predic-
tion, equations (2) and (3) are substituted into the SC-PHD
prediction equation (1), yielding

Dk|k−1(x,y) =

Nk−1∑
i=1

ζ
(i)
k−1πk|k−1(x|x

(i)
k−1)D̃k|k−1(y|x

(i)
k−1).

Next, the Markov transition density of the parent is approxi-
mated by drawing M samples from it:

{x(i,1), · · · ,x(i,M)} ∼ πk|k−1(x|x
(i)
k−1)

Dk|k−1(x,y) ≈
Nk−1∑
i=1

M∑
j=1

ζ(i)

M
δ(x − x(i,j))D̃k|k−1(y|x

(i)
k−1)

Measurement-driven births are used, as described in [10], so
the incorporation of new targets into the daughter PHD is
delayed until the update step. Therefore, the predicted daughter
PHD describes only persisting daughter objects propagated
forward in time:

D̃S,k|k−1(y|x
(i)
k−1) =

pS(y|x(i)
k−1)

JS,k|k−1∑
j=1

w
(j)
S,k|k−1N

(
y, µ

(j)
S,k|k−1,P

(j)
S,k|k−1

∣∣x(i)
k−1
)

w
(j)
S,k|k−1 = w

(j)
k−1

µ
(j)
S,k|k−1 = f(µ

(j)
k−1)

P
(j)
S,k|k−1 = FkP

(j)
k−1F

T
k +WkQkW

T
k

where f(µ) is the (possibly non-linear) motion model describ-
ing the motion of daughter objects and F and W are the Jaco-
bians of the motion model with respect to the daughter feature
and process noise respectively. The predicted joint PHD would
now consist of Nk|k−1 = M ×Nk−1 particles corresponding
to the parent state, and the same number of Gaussian mixtures
representing the conditional daughter PHDs. This means the
number of particles would grow geometrically with every
prediction, but when the particles are resampled, only a
number of samples equal to the number of original particles
is drawn, to make it feasible to iterate for as many time steps
as necessary.

For the update step, each conditional daughter PHD is
individually updated with the received measurements:

D̃k|k(y|x) = (1−pD(y|x))
Jk|k−1∑
j=1

w
(j)

k|k−1N
(
y;µ

(j)

k|k−1, P
(j)

k|k−1

)
+
∑
z∈Zk

Jk|k−1∑
j=1

w
(j)

k|kN
(
y;µ

(j)

k|k(z),P
(j)

k|k(z)
)

+
∑
z∈Zk

wγ0
ηz(y|x)

N
(
y; z∗(x),R∗

)
,



where

ηz(y|x) = κ(z) + pD(·|x)
Jk|k−1∑
l=1

g(z|y,x)w(j)
k|k−1 + wγ0

w
(j)
k|k = w

(j)
k|k−1pD(·|x)g(z|y,x)w

(j)
k|k−1ηz(y|x)

−1

µ
(j)
k|k(z) = µ

(j)
k|k−1 +K(z − h(µ(j)

k|k−1,x))

P
(j)
k|k(z) = (I−KkHk)P

(j)
k|k−1

Kk = PHT
k S
−1
k

Sk = HkPk|k−1H
T
k +Rk.

With measurement driven births, the terms z∗(x) and R∗

are the mean and covariance of the birth term generated
from measurement z. The term z∗(x) = h−1(z,x) is chosen
such that h(z∗(x),x) = z, while R∗ can be chosen to be
R∗(·)(x) = J∗R(·)J

∗T if the Jacobian J of the inverse mea-
surement function h−1 is known. After updating the daughter
Gaussian Mixtures, the weights of the parent particles are
updated using their multi-object likelihoods LZk

(x
(i)
k|k−1):

ζ
(i)
k =

LZk
(x

(i)
k|k−1)ζ

(i)
k|k−1∑Nk|k−1

l=0 LZk
(x

(l)
k|k−1)ζ

(l)
k|k−1

,

LZk
(x

(i)
k|k−1) = exp

( J
(i)

k|k−1∑
j=0

w
(j)
k|k−1

) ∏
z∈Zk

ηz(y
(i)
k|k−1|x

(i)
k|k−1).

III. THE CUDA PROGRAMMING MODEL

Effective parallel programming with CUDA requires an
understanding of the capabilities and limitations of the GPU as
a computational platform. A CUDA application will generally
contain portions which are executed in parallel on the GPU
(device code), and portions which are executed serially by
the CPU (host code), with program flow alternating between
host code and device code. Device code is executed in parallel
by a grid of hundreds or thousands of threads on the GPU,
which is subdivided into thread blocks. Each thread within
the grid has access to index values denoting the particular
thread block in which it is located, and its location within
that block. These indices are used to differentiate behavior
among threads, for example, accessing different portions of
the input and output data arrays. Every thread receives the
same set of instructions in the form of a special C function
called a kernel. In practice, CUDA kernels are not written to
execute an entire algorithm on the GPU, but rather to perform
smaller, computationally demanding portions of the algorithm
that have been previously singled out through profiling. Ideal
candidates for GPU parallelization are procedures in which
very large arrays are processed, with every array element
being operated upon with an identical set of computationally
expensive instructions. In other words, rather than looping
serially through an array with a for or while loop, a GPU
kernel would execute all iterations of the loop in parallel, with
a single thread handling each iteration.

The most important factor affecting the performance of a
CUDA application is memory bandwidth. Prior to execution
of a kernel, the input data must be transferred from the host to
the device, and the output data must be transferred from the
device back to the host following kernel execution. The time
to perform these operations is very long relative to the time
to execute computational tasks, so one must ensure that the
computational gains from parallization outweigh the penalties
incurred by memory operations. An effective CUDA applica-
tion will strike a balance between processing small data arrays
in serial on the CPU and processing large arrays in parallel
on the GPU. There are many more design considerations for
optimizing the performance of a CUDA kernel, which are
outlined in the CUDA toolkit documentation [11].

IV. PARALLEL IMPLEMENTATION

The Gaussian mixture SC-PHD filter propagates the parent
state as a collection of particles, with each particle being linked
to a daughter Gaussian mixture PHD conditioned on the state
and trajectory of that particle. These pseudocode listings will
make use of the following abbreviations:

Dk(x,y)
.
= {x(i), ω(i), D̃

(i)
k (y|x)}Nk

i=1

D̃
(i)
k (y|x) .= {µ(j),P(j), w(j)}J

(i)

j=1

Each of the subroutines listed here accepts as input and
returns as output a single parent particle and its corresponding
PHD. Serial procedures are marked as Functions and parallel
procedures meant to be ran on the GPU are denoted Kernels.
For numerical stability, it is recommended that weights and
likelihoods be replaced with their log-equivalents, and that the
corresponding computations be modified accordingly.

The source code for this GPU implementation of the SC-
PHD filter is freely available under the Apache 2.0 license at
the following address:

https://github.com/cheesinglee/cuda-PHDSLAM

The top-level filter iteration should look familiar to those ex-
perienced with other Bayesian filter methods such as the EKF.
The update step is split into two subroutines: PreUpdate
computes auxilliary terms which are needed for the compu-
tation of the SC-PHD update and Update implements the
actual update equations. In this work the PruneAndMerge
subroutine was implemented as described in [12], but an alter-
native Gaussian mixture reduction algorithm can be substituted
at the user’s discretion. The same may be said about the
Resample subroutine for resampling the parent particles.

In the GPU implementation, the joint PHD consists of one
array of particle states representing the parent, and another
array of Gaussians representing all conditional daughter PHDs
concatenated together. Typically, the parent state consists of
several hundred particles, each represented by a vector of
less than 10 dimensions. The daughter array is several orders
of magnitued larger. Each daughter PHD consists of several
hundred Gaussian terms, each comprised of a scalar weight,
mean vector, and covariance matrix. In general, operations

https://github.com/cheesinglee/cuda-PHDSLAM


Function SC-PHD(Dk−1,Zk)
Input: Prior joint state estimate, current measurements
Output: Posterior joint state estimate, measurements
for i = 1 . . . Nk−1 do

D
(i)

k|k−1 =Predict(D(i)
k−1(x,y))

D̂
(i)

k|k−1 =PreUpdate(D(i)

k|k−1(x,y),Zk)

[D̃
(i)

k|k, LZk (X)] = Update(D̃(i)

k|k−1, D̂
(i)

k|k−1,Zk)

ω(i) = ω(i) × LZk (X)

D̃
(i)

k|k = PruneAndMerge(D̃(i)

k|k) // [12, Table
II]

end
// Particle resampling according to [13,

Algorithm 2]

x(1...Nk) = Resample(x(1...Nk), ω
(1...Nk)
k )

ω(1...Nk) = 1/K

return Dk = {x(i), ω(i), D̃
(i)
k (y|x)}Nk

i=1

involving the daughter PHD array will be carried out on the
GPU, while operations involving only the parent array will
be carried serially with the CPU, as the parent array is too
small to overcome the memory performance bottleneck. By
parallelizing the filter, the for loop in the above pseudocode
is eliminated.

A. Thread grid dimensioning and indexing

The threads related to the daughter Gaussian mixture of a
single particle need to share information in order to perform
the update, so we assign one thread block per parent particle.
This raises two design challenges which must be dealt with:
1) thread blocks must be uniform in size, but the different
conditional daughter PHDs will differ in size, and, 2) the
number of Gaussian terms in a single conditional daughter
may exceed the maximum allowable thread block size. To
address both issues, an array is passed to the GPU where each
element indicates the number of terms in the corresponding
GM. A prefix sum of this array yields an indexing offset
pointing to the beginning of the appropriate Gaussian mixture
in the concatenated array. Moreover, knowing the number
of Gaussians permits the construction of a for loop which
processes the input data blockDim threads at a time.

B. Prediction

The prediction stage involves propagating both the parent
distribution and daughter PHDs forward in time. The parent
prediction is performed serially while the daughter PHD is
predicted in parallel on the GPU. Implementing a per-thread
random number generator would be prohibitively complicated,
so the random noise samples are generated by the host, and
passed to the kernel as input arguments.

C. Pre-Update

In the PreUpdate subroutine, single-object measurement
likelihoods for each measurement and each term within the
daughter Gaussian mixture are computed. The Gaussian mix-
ture terms are also updated with the measurements via a
Kalman update.

Function Predict(Dk−1)
Input: Prior parent state particle and conditional daughter PHD
Output: Predicted sensor state and object PHD
// Sample sensor transition density
for n = 1 . . .M do

x
(n)

k|k−1 ∼ π(x̃|x)
ω

(n)

k|k−1 ← ω

// Predict daughter PHD

forall the {µ(j)
k−1,P

(j)
k−1, w

(j)
k−1} in D̃k−1 do

w
(j)

k|k−1 = w
(j)
k−1

µ
(j)

k|k−1 = f(µ
(j)
k−1)

P
(j)

k|k−1 = F(j)P
(j)
k−1F

(j),T +W(j)Q(j)W(j),T

end
D̃

(n)

k|k−1 = {µ(j)

k|k−1,P
(j)

k|k−1}
J
j=1

end
return Dk|k−1 = {x(n)

k|k−1, ω
(n)

k|k−1, D̃
(n)

k|k−1}
M
n=1

Function CUDAPredict(priorParent, priorDaughter)
predictedParent = hostarray(sizeOf(priorParent))
for i = 0, . . . , nParticles do

processNoise = makeNoise()
predictedParent[i] =
computeParentMotion(priorParent[i],processNoise)

end
predictedDaughter = devicearray(sizeOf(priorDaughter))
noiseArray = makeNoise()
daughterPredictKernel
(priorDaughter,predictedDaughter,noiseArray)

Let nPredict be the total number of terms in the con-
catenated predicted daughter PHD, and nMeasure be the
number of received measurements. The preupdate will com-
pute nPreupdate = nPredict × nMeasure single-object
likelihoods and updated Gaussians.

D. Update

The remainder of the SC-PHD update is performed by
the Update subroutine. Here, the predicted and preupdated
daugther PHD terms, along with measurement-driven birth
terms are concatenated and reweighted to form the final
updated PHD.

The updated daughter PHD will be the preupdate array
concatenated with nPredict terms representing missed detec-
tion terms, and nMeasure × nParticles terms representing
measurement-driven birth. Within each thread block, shared
memory is used to compute weight normalization terms and
the multi-object likelihood value to re-weight the parent par-
ticle.

V. RESULTS

To analyze the performance gains that can be obtained
using the GPU implementation of the filter, a simple tracking
scenario was generated consisting on targets moving in a plane
according to Brownian motion. The sensor that observes this
population also moves according to Brownian motion, and thus



Kernel daughterPredictKernel(prior,noise,predictedArray)
for j = 0,nThreads,2nThreads,. . . ,nFeatures do

idx = tid + j
predictedArray[idx] =
computeMotion (prior[idx],noise[idx])

end

Function PreUpdate(Dk|k−1,Zk)
Input: Predicted sensor particle and multi-object PHD,

measurements
Output: Pre-update terms for SC-PHD daughter update
forall the {µ(j),P(j), w(j)} in Dk|k−1 do

ẑ = h−1(X, µ(j)) // Predicted measurement
S = HP(j)HT +R // Innovation covariance
K = P(j)HTS−1 // Kalman Gain
P(j|·) = (I−KH)P // Updated covariance
for i = 1 . . . |Z| do

// single-object likelihood
p(z(i)|µ(j), y) = N

(
z(i); ẑ,S

)
µ(j|i) = µ+K(z − ẑ) // Updated mean

end
end
D̂o|s = {µ(j|i),P(j|i)} j=1...J

i=1...|Z|
return p(·|·,x), D̂k|k−1

the acquired measurements exhibit random drift, which also
needs to be estimated. Let the parent state be defined by a
bias vector X = [x, y]. Given noise parameters σx, σy for
the parent motion model, the parent particles are predicted as
follows;

Xk|k−1 = Xk−1 + v v ∼ N
(
X; [ 00 ] ,

[
σ2
x 0

0 σ2
y

] )
Concurrently with the parent particles, the terms in the daugh-
ter Gaussian mixtures are predicted using a Brownian motion
model with noise parameters σr, σs. The predicted mean and
covariance are computed as follows:

µk|k−1 = µk−1 Pk|k−1 = Pk|k−1 +
[
σ2
r 0

0 σ2
s

]

Fig. 1. Simulated measurements, with x versus time above and y versus
time below.

Kernel preupdateKernel(predictedDaughterArray,
predictedParentArray,measurements,offsets,likelihoods,
preupdateDaughter)

parent = predictedParentArray[blockIdx.x] ; predicted =
predictedDaughterArray[threadIdx.x]
z = measurements[threadIdx.y]
preupdate.weight =
computeSingleObjectLikelihood(z,predicted,parent)
preupdate.mean,preupdate.cov =
KalmanUpdate(z,predicted,parent) ;
preupdateDaughter[threadIdx.x,threadIdx.y] = preupdate

Function Update(Dk|k−1, D̂k|k−1, pz|µ,x )
Input: Predicted multi-object PHD and pre-update terms
Output: Updated multi-object PHD
forall the µ(j),P(j), w(j) in Dk|k−1 do

// Non-detection terms

µ
(j)
nd = µ(j); P

(j)
nd = P(j); wnd = w(j)

// Detection terms
for i = 1 . . . |Z| do

µ
(j|i)
d = µ(j|i); P

(j|i)
d = P(j|i); // from D̂k|k−1

w
(j|i)
d = w̃(j)pDpz|s,o(zi|µ̃(j), y)

end
// Measurement-derived birth terms
for i = 1 . . . |Zk| do

µ
(i)
0 = h−1(y, zi); P

(i)
0 = R∗; w

(i)
0 = w0

end
// Normalize weights
// compute multi-object likelihood
Ñ =

∑J
j=1 w̃

(j)

LZk (X) = exp(Ñ)
for i = 1 . . . |Z| do

ηzi = κ(zi) +
∑J
j=1 w

(j|i)
d + 2w0

for j = 1 . . . J do
w

(j|i)
d /= ηzi

end
w

(i)
0 /= ηzi

LZk (X) = LZk (X)× ηzi
end

end
// Concatenate terms

µk|k = [µ
(1...J)
nd , µ

(1...Jk|k−1|1...|Zk|)
d , µ

(1...|Zk|)
0 ]

Pk|k = [P
(1...J)
nd ,P

(1...Jk|k−1|1...|Zk|)
d ,P

(1...|Zk|)
0 ]

wk|k = [w
(1...J)
nd , w

(1...Jk|k−1+1...|Zk|)
d , w

(1...|Zk|)
0 ]

return {µk|k,Pk|k, wk|k, LZk (X)}

The measurement model is simply an identity function on the
daughter state, biased by the parent particle state.

ẑ(µ|X) = µk|k−1 +Xk|k−1

The conditional single object measurement likelihood is com-
puted by evaluating the following multi-variate Gaussian:

p(z|µ,X) = N
(
z; ẑ,S

)
S = Pk|k−1 +R

where R is the measurement noise covariance matrix. This
model is similar to the simultaneous protein tracking and



Kernel PHDUpdate(predictedGaussians,offsets,measurements)
[idxIn,idxOut,nPredict,blockOffset] =
computeIndices(offsets,threadIdx,blockIdx)
predicted = predictedGaussians[idxIn]
i = idxOut - blockOffset
if i >nPredict then non-detection

weight = predicted.weight
updatedGaussians[idxOut] = predicted

else if nPredict <= i <(nPredict*(1 + nMeasurements)) then
detection

m = floor((i - nPredict)/nPredict)
updated = preUpdate(predicted,measurements[m]) weight =
updated.weight updatedGaussians[idxOut] = updated

else if i >= (nPredict*(1 + nMeasurements)) then birth
m = i - (nPredict*(1 + nMeasurements))
birth = computeBirth(measurements[m])

end
sharedmem[threadIdx] = weight
normalizer = sum(sharedmem)
updatedGaussians[idxOut] /=normalizer

0 2000 4000 6000 8000 10000
# particles

10-2

10-1

100

101

102

103

104

T
im

e
 (

se
co

n
d
s)

Fig. 2. Execution time of the GM-SCPHD filter. The dashed line indicates
the running time for the serial implementation, and the solid the parallel one.
The ordinate is the logarithm of the running time.

microscope drift estimation problem presented in [9].
For simulation inputs, a 20 time step scenario

was generated for which 10 Monte Carlo runs
were executed with varying parent particle counts:
N = {50, 100, 200, 500, 1000, 2000, 5000, 10000}. The
test data can be visualized in Figure 1. The timing results
are shown in Figure 2. These results show that while
the GPU implementation is significantly faster than the
serial implementation, the execution time still increases
proportionally to the number of parent particles. Further
profiling revealed that the majority of the computation time
occurs within the Gaussian mixture reduction subroutine.
Because it is an inherently sequential operation, the GM
reduction was left as a serial subroutine to be run on the
CPU. As the CPU loops over each parent particle to reduce
its corresponding Gaussian mixture, it is to be expected that
time would increase with a higher number of particles.

VI. CONCLUSIONS

The SC-PHD filter is a useful tool when solving a wide class
of estimation problems that consist on jointly tracking a parent
single-target state and a daughter multi-object state that is
conditioned on the parent. Although this filter has been widely
shown to perform well when solving this problem, serial
implementations are slow since they do not exploit the inherent
parallelism offered by this filter. In this article, a parallel
version of the filter was detailed, and an implementation
exploiting the high-performance capabilities of GPUs was
described. This implementation was shown to perform well
on simulated data, providing considerable speed-up compared
to the serial version of the same algorithm.

REFERENCES

[1] R. P. Mahler, Statistical multisource-multitarget information fusion.
Artech House ˆ eBoston Boston, 2007, vol. 685.

[2] ——, “Multitarget bayes filtering via first-order multitarget moments,”
Aerospace and Electronic Systems, IEEE Transactions on, vol. 39, no. 4,
pp. 1152–1178, 2003.

[3] A. Swain and D. Clark, “Bayesian estimation of the intensity for
independent cluster point processes: An analytic solution,” Procedia
Environmental Sciences, vol. 7, pp. 56–61, 2011.

[4] M. Uney, B. Mulgrew, and D. Clark, Cooperative sensor localisation
in distributed fusion networks by exploiting non-cooperative targets.
ICASSP, 2014.

[5] B. Ristic, D. E. Clark, and N. Gordon, “Calibration of multi-target
tracking algorithms using non-cooperative targets,” Selected Topics in
Signal Processing, IEEE Journal of, vol. 7, no. 3, pp. 390–398, 2013.

[6] C. S. Lee, D. Clark, and J. Salvi, “Slam with single cluster phd filters,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on, May 2012, pp. 2096–2101.

[7] C. S. Lee, D. E. Clark, and J. Salvi, “Slam with dynamic targets via
single-cluster phd filtering,” Selected Topics in Signal Processing, IEEE
Journal of, vol. 7, no. 3, pp. 543–552, 2013.

[8] A. Swain and D. E. Clark, “First-moment filters for spatial independent
cluster processes,” in SPIE Defense, Security, and Sensing. International
Society for Optics and Photonics, 2010, pp. 76 970I–76 970I.

[9] J. Franco, J. Houssineau, D. Clark, and C. Rickman, “Simultaneous
tracking of multiple particles and sensor position estimation in fluo-
rescence microscopy images,” in Control, Automation and Information
Sciences (ICCAIS), 2013 International Conference on. IEEE, 2013, pp.
122–127.

[10] J. Houssineau and D. Laneuville, “Phd filter with diffuse spatial prior
on the birth process with applications to gm-phd filter,” in Information
Fusion (FUSION), 2010 13th Conference on. IEEE, 2010, pp. 1–8.

[11] Nvidia Corporation, “CUDA toolkit documentation,” 2014. [Online].
Available: http://docs.nvidia.com/cuda/

[12] B.-N. Vo and W.-K. Ma, “The gaussian mixture probability hypothesis
density filter,” Signal Processing, IEEE Transactions on, vol. 54, no. 11,
pp. 4091–4104, 2006.

[13] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
Signal Processing, IEEE Transactions on, vol. 50, no. 2, pp. 174–188,
2002.

http://docs.nvidia.com/cuda/

	Introduction
	The SC-PHD Filter
	The CUDA Programming Model
	Parallel Implementation
	Thread grid dimensioning and indexing
	Prediction
	Pre-Update
	Update

	Results
	Conclusions
	References

