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Abstract—Secondary motions of targets observed by radar
introduce non-stationary returns containing the so-called micro-
Doppler information. This is characterizing information that can
be exploited to enhance automatic target recognition systems.
In this paper, the challenge of classifying the micro-Doppler
return of helicopters is addressed. For this specific family of
targets the received signal is characterized by a high degree
of sparseness. A robust dictionary learning algorithm, Label
Consistent K-SVD (LC-KSVD), is applied to identify effectively
and efficiently helicopters. The effectiveness of the proposed
algorithm is demonstrated on both synthetic and real radar data.

I. INTRODUCTION

The Doppler effect [1] is commonly experienced when an
object emitting a sound, such as a car, moves relative to an
observer. As it approaches, the sound emitted by the object is
observed as higher in frequency than the sound observed when
the object moves away; this is due to the effective compression
and stretching of the sound waves in front of and behind the
object, respectively.

Similar Doppler shifts are observed when using Radio
Detection and Ranging (RADAR) systems to investigate a
moving object. The main motion of this object determines
its predominant Doppler signature, which can be used to
measure its bulk velocity, while any secondary motions, such
as the rotation of rotor blades of a helicopter, contribute with
features known as micro-Doppler (mD) signatures [2]. Such
signatures appear superimposed on the object’s main Doppler
contribution, and can be used to identify (classify) different
targets.

In the last decade several mD-based radar automatic target
recognition techniques have been presented [3]. A common
way to extract the mD information is to use time frequency
analyis. In [4] the authors developed a mD features extraction
approach which derives from the combination of the Short
Time Fourier Transform (STFT) and the Wigner Distribution;
in [5] the STFT was used in conjunction with the pseudo-
Zernike moments in order to classify different human targets.
A real time demonstrator was described in [6] where a simple
STFT based feature was extracted. However, these methods
present a relative high computational cost due to the computa-
tion of a time-frequency distribution and depend on the choice
of the parameters of the distribution itself (i.e. window length),
which, in turn, depend on the dynamic of the target.

The capability to classify a helicopter by analysing its mD
properties was first investigated in [7], after that in [8] was
demonstrated that the theoretical return signal from propeller
blades depend on the number, the length and the rotation
speed of the blades themselves. In [9] was demonstrated that
even a passive bistatic radar (PBR) is able to record the mD
signature of a helicopter. A mD features extraction algorithm
from helicopter return signal was presented in [10], which is
still based on the computation of the STFT, while in [11] a
model-based classification algorithm was introduced, enabling
high accuracy with low computational cost and exploiting the
parameter estimation approach introduced in [12].

Dictionary learning for sparse representation has produced
promising results in the field of image processing [13], [14],
[15]. In this paper, a robust method for classifying the mD
signatures of helicopters via dictionary learning is presented.
The proposed technique utilises the Label Consistent K-SVD
(LC-KSVD) algorithm [16] and does not need the computation
of any time-frequency representation; thus, it is independent of
the received signal, since no parameters have to be adapted to
the input signal, such as the window length.

The reminder of the paper is organised as follows: Section
II describes the LC-KSVD algorithm for dictionary learning
and how it is applied in the mD automatic target recognition
context, while in Section III the performance of the proposed
algorithm on both simulated and real data are analysed. Section
IV concludes the paper.

II. LABEL CONSISTENT K-SVD FOR MICRO-DOPPLER
CLASSIFICATION

A. Sparsity Constraint Using `0-Norm

Let Y = [y1, . . . ,yN ] ∈ Cn×N be a set of N n-
dimensional input signals. An over-complete reconstructive
dictionary, D = [d1, . . . ,dK ] ∈ Cn×K (where K > n), can
be learned for the sparse reconstruction of Y by solving the
following problem:

〈D,X〉 = argmin
D,X

‖Y −DX‖22 s.t. ∀i, ‖xi‖0 ≤M (1)

where X = [x1, . . . xN ] ∈ CK×N are the sparse codes of the
input signals Y, and ‖Y −DX‖22 denotes the reconstruction
error. M is a sparsity constraint factor; thus, each sparse code
has fewer than M non-zero values. For a given D, a sparse



code xi of yi can be found by solving:

xi = x∗(yi,D) = argmin
x

‖yi −Dx‖22 s.t. ‖x‖0 ≤M.

(2)

The K-SVD algorithm [17] comprises an iterative approach to
efficiently minimise the energy in (1), while learning a recon-
structive dictionary for the sparse decomposition of signals.
The orthogonal matching pursuit algorithm (OMP) [18] or the
pruned OMP (POM) [12] can be used to solve (2).

B. Sparsity Constraint Using `1-Norm

Very often, an alternative approach to (1) using `1-norm
regularisation can be employed to enforce sparsity:

〈D,X〉 = argmin
D,X

[
‖Y −DX‖22 + γ‖X‖1

]
, (3)

where γ is a parameter to balance the reconstruction error and
sparsity. Similarly, given D, a sparse code xi of an input signal
yi can be established as follows:

xi = x∗(yi,D) = argmin
x

[
‖yi −Dx‖22 + γ‖x‖1

]
, (4)

which is suitably optimised by a number of efficient `1-
optimisation approaches, such as [19], [20].

C. Label Consistent K-SVD

This algorithm aims to enforce the labels of the input
signals to learn a reconstructive and discriminative dictionary.
Each dictionary item dk is chosen such that, in the ideal
case, it represents a subset of the training signals from a
single class; thus, each dictionary item can be associated with
a particular label. The algorithm incorporates both a joint
classification error and label consistency regularisation term
into the objective function of (1) for the learning of a dictionary
with reconstructive and discriminative capabilities.

In LC-KSVD, a linear predictive classifier f(x;W) = Wx
is used. The discriminability of the input sparse codes X has a
positive impact on the performance of such a linear classifier;
therefore, encouraging discriminability during dictionary learn-
ing is of interest. Furthermore, incorporating the training of
such a classifier into the objective function used for dictionary
learning can simultaneously make the dictionary optimal for
classification. The algorithm harnesses the above knowledge
within an objective function for learning a dictionary D with
both reconstructive and discriminative power; this is defined
as follows:

〈D,W,A,X〉 = argmin
D,W,A,X

[
‖Y −DX‖22 + α‖Q−AX‖22+

+ β‖H−WX‖22
]

s.t. ∀i, ‖xi‖0 ≤M,

(5)

where the terms ‖Q−AX‖22 and ‖H−WX‖22 represent the
discriminative sparse-code error and the classification error,
respectively. The former ensures that the transformed sparse
codes AX (where A ∈ CK×K is a linear transformation
matrix) approximate the discriminative sparse codes Q =
[q1, . . . ,qN ] ∈ CK×N , while the latter trains the classifier
parameters W ∈ CL×K , where L is the number of categories,
to recover the class labels H = [h1, . . . ,hN ] ∈ CL×N of

the input signals Y. Thus, signals from the same class are
encouraged to have very similar sparse representations, which
results in good classification performance when using the
trained linear classifier. Parameters α and β are the scalars
controlling the relative contribution of the corresponding terms.

The vector qi =
[
q1i , . . . , q

K
i

]T ∈ RK is deemed a
discriminative sparse representation of an input signal yi if its
non-zero values occur at those indices where the input signal
yi and the dictionary item dk share the same label. In addition,
hi ∈ RL is a label vector corresponding to an input signal yi,
where the class of yi is defined by hi’s non-zero position.

The K-SVD algorithm is used to find the optimal solution
for all parameters simultaneously. If equation (5) is written as
follows:

〈D,W,A,X〉 = argmin
D,W,A,X

∥∥∥∥∥∥
 Y√

αQ√
βH

−
 D√

αA√
βW

X

∥∥∥∥∥∥
2

2

s.t. ∀i, ‖xi‖0 ≤M,
(6)

defining Ynew =
(
YT ,
√
αQT ,

√
βHT

)T
, and Dnew =(

DT ,
√
αAT ,

√
βWT

)T
, where Dnew is `2-normalised

columnwise, allows for the optimisation of (6) to be rewritten
as:

〈Dnew,X〉 = argmin
Dnew,X

‖Ynew −DnewX‖22

s.t. ∀i, ‖xi‖0 ≤M.
(7)

This is exactly the problem that K-SVD [17] solves. Following
the application of K-SVD, dk and its corresponding coeffi-
cients, contained within the k-th row in X, denoted as xR

k , are
updated. Let

Ek =

Y −
∑
j 6=k

djx
R
j

 , (8)

and x̃R
k and Ẽk denote the result of discarding the zero entries

in xR
k and Ek, respectively. dk and x̃R

k can be computed by〈
dk, x̃

R
k

〉
= argmin

dk,x̃R
k

∥∥∥Ẽk − dkx̃R
k

∥∥∥2
2
. (9)

Following computation of the SVD for Ẽk (i.e., UΣVT =
SVD(Ẽk)), dk and x̃R

k are computed as

dk = U (:, 1) , x̃R
k = Σ(1, 1)V (:, 1) (10)

Finally, the non-zero values in xR
k are replaced by x̃R

k .
The ability of LC-KSVD to learn D, A, and W simulta-

neously is scalable to a large number of classes, and reduces
the possibility of converging to a local minima. Furthermore,
it enables the use of discriminative sparse-code error in the ob-
jective function; thus, LC-KSVD can produce a discriminative
sparse representation irrespective of the size of the dictionary.

D. LC-KSVD Algorithm

As mentioned in the LC-KSVD algorithm description, the
parameters D(0), A(0), and W(0) must be initialised.

For the initial dictionary, D(0), several iterations of K-SVD
are applied within each class, and all of the outputs produced



are combined. Each dictionary item dk is then given a label
based on the class it corresponds to; this label will remain fixed
throughout the dictionary learning process, although dk itself
is updated during the learning process. While a distinct and
fixed-class label is associated with each dictionary item, it is
possible for an input signal of a specific class to use dictionary
items corresponding to other classes. The algorithm uniformly
allocates dictionary elements to each class; the number of
elements allocated is proportional to the dictionary size.

Given the initialised dictionary, D(0), the original K-SVD
algorithm is employed to compute the sparse codes X of the
training signals Y.

To initialise A(0), the technique of multivariate ridge
regression [21] is used, with the quadratic loss and `2-norm
regularisation, as follows:

A = argmin
A

‖Q−AX‖2 + λ1‖A‖22. (11)

This yields the following solution:

A = QXT
(
XXT + λ1I

)−1
. (12)

Similarly, for W(0), the ridge regression model is used to
obtain the following solution:

W = HXT
(
XXT + λ2I

)−1
. (13)

where λ1 and λ2 are regularisation parameters.

The LC-KSVD algorithm is summarised in Algorithm 1.

Algorithm 1 Label Consistent K-SVD.
Input Y, Q, H, α, β, M , K
Output D, A, W
Compute D(0), A(0), W(0): compute D(0) by combin-

ing class-specific dictionary items for each class using
original K-SVD [17]; compute the sparse codes X(0)

for Y by using (2); compute A(0) and W(0) using (12)
and (13).

Initialise Ynew =

 Y√
αQ√
βH

, Dnew =

 D(0)
√
αA(0)
√
βW(0)


Update Dnew by solving (7) using original K-SVD [17];
Obtain D, A, W from Dnew by using (14).

The parameters α and β are fixed for each data set and
determined by n-fold cross validation on the training data.
The feature descriptors used are random vectors, whereby each
original radar return signal is projected onto an n-dimensional
feature vector with a randomly generated matrix from a zero-
mean normal distribution. Each row of the random matrix is
`2-normalised.

E. Classification Approach

We obtain D = {d1, . . . ,dK}, A = {a1, . . . ,aK} and
W = {w1, . . . ,wK} from Dnew by employing the K-SVD
algorithm [17]. D, A and W are `2-normalised in Dnew; i.e.,
∀k,
∥∥∥(dT

k ,
√
αaT

k ,
√
βwT

k

)T∥∥∥
2
= 1. Thus, the desired dictio-

nary D̂, transform parameters Â, and classifier parameters Ŵ

are computed as follows:

D̂ =

{
d1

‖d1‖2
, . . . ,

dK

‖dK‖2

}
, Â =

{
a1

‖a1‖2
, . . . ,

aK

‖aK‖2

}
,

Ŵ =

{
w1

‖w1‖2
, . . . ,

wK

‖wK‖2

}
.

(14)

Hence, for an input signal yi, which has a discriminative
code qi and a label vector hi, the relationship between the
desired

(
D̂, Â,Ŵ

)
and the learned (D,A,W) parameters is

established according to

yi ' Dxi =
∑
k

xk,idk =
∑
k

xk,i‖dk‖2
dk

‖dk‖2
=∑

k

x̂k,id̂k = D̂x̂i

(15)

qi ' Axi =
∑
k

xk,iak =
∑
k

xk,i‖dk‖2
ak

‖dk‖2
=∑

k

x̂k,iâk = Âx̂i

(16)

hi 'Wxi =
∑
k

xk,iwk =
∑
k

xk,i‖dk‖2
wk

‖dk‖2
=∑

k

x̂k,iŵk = Ŵx̂i

(17)

where d̂k = dk

‖dk‖2
, âk = ak

‖dk‖2
and ŵk = wk

‖dk‖2
are the k-th

column of D, A and W, respectively.
Eventually, given a test signal s, its sparse representation

x̂ is obtained by using dictionary D̂ to solve (2) or (4). Subse-
quently, the trained linear predictive classifier is employed to
estimate a label vector p = Ŵx̂. The resulting class which s
belongs to, is given by the index of the largest element of p.

III. PERFORMANCE ANALYSIS

The performance analysis is performed on both simulated
and real data, for all the presented analysis in this section the
results are obtained averaging over 5 runs, where each run
used a newly trained dictionary, different randomly selected
training/testing vectors, and a different sensing matrix for
feature extraction.

The synthetic data were generated according to the model
provided in [2]. In Table I the eight helicopters models and
parameters are reported, these can be used alongside other
variables such as the helicopter elevation angle and initial
phase to generate synthetic mD signatures for each model. A

Table I. MAIN ROTOR FEATURES OF TYPICAL HELICOPTERS [2]

Name # of Blades Diameter (m) Rotation Rate (r/s)

AH-1 Cobra 2 7.32 4.9

AH-64 Apache 4 7.32 4.8

UH-60 Black Hawk 4 8.18 4.3

CH-53 Stallion 7 12.04 2.9

MD-500E Defender 5 4.03 8.2

A109 Agusta 4 5.50 6.4

AS332 Super Puma 4 7.80 4.4

SA365 Dauphin 4 5.97 5.8

carrier frequency of 1.5 GHz was used, and a signal duration of



0.345 seconds was selected to accommodate for one revolution
of slowest helicopter’s rotor blades. The sampling rate was
kept at 5 kHz to avoid aliasing in the mD signatures. In the
generation of radar returns for training and testing purposes,
the distance between the helicopter and receiver was assumed
to be known and constant at 500 metres. The elevation was
varied between zero and 90 degrees, and the initial phase was
varied over the range −π to π; both parameters were selected
randomly. The rotation rate of rotor blades were randomly
distributed over ±1% of values given in Table I, and blade
lengths were as given in the same table. The used length
of the feature vectors, n, was 1024, the sparsity threshold
M = 1,

√
α = 0.1 and

√
β = 1; 512 training vectors and 73

test vectors were used for each class. The analysis is carried
out by varying dictionary size K, which is either 1024 or
4096. Figure 1 shows the proposed classification method’s
performance when classifying synthetic data on varying the
SNR, assuming to be in a AWGN scenario. As expected, the
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Figure 1. Classification accuracy on synthetic data on varying the SNR. The
blue straight line refers to the case in which the dictionary size K is 4096,
whereas for the red dashed line K = 1024.

algorithm performs increasingly well as the SNR increases;
at SNR = −5dB the percentage of correct classification is
around 80% for both the dictionary sizes. It reaches 94.25%
and 89.75% for K = 4096 and K = 1024, respectively,
showing an overall better performance when the dictionary is
larger.

The validity of the approach is proved with real data.
Signals from the two-bladed helicopter scale model GAUI X3
are acquired with a 24 GHz radar in CW mode and sampling
frequency of 22 kHz. Four rotating speed for the rotor of
model helicopter have been chosen, whose actual values are
reported in Table II. Three acquisitions of 30 seconds are made

Table II. SCALE MODEL’S ROTATION SPEED

Target Average Speed
A 6.72 rps
B 9.12 rps
C 12.42 rps
D 13.32 rps

for each speed, at three different aspect angles, 0, 30 and
60 degrees. The duration of each sample considered for the
analysis is of 0.1 seconds. Moreover, the algorithm was set up
using feature vectors of length 64, a dictionary size of 896,
sparsity threshold of 10, 400 training vectors, 400 test vectors,√
α = 0.1, and

√
β = 0.1. Figure 2 shows the confusion

matrix of the proposed classification method on real data. For
this case an average accuracy of 90.1875% is obtained with a
maximum for target A of 93% and minimum for target D of
84.25%.

Last analysis investigates the influence of both dictionary
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Figure 2. Confusion matrix obtained by applying the algorithm on real data.

size and feature vector length on the classification accuracy by
varying these two parameters and providing the percentage of
correct classification for the real data. This last results demon-
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Figure 3. Classification accuracy on real data on varying the dictionary size,
K, and the feature vector length, n.

strate that by increasing the number of features, better accuracy
can be obtained. However, the drawback is an increase in the
computational cost.

IV. CONCLUSION

In this paper a dictionary learning approach for automatic
recognition of helicopters based on micro-Doppler information
has been presented. The Label Consistent K-SVD algorithm
has been used to learn the dictionary that is then used to
classify the helicopters. The accuracy of the proposed method
has been confirmed using both simulated and real data. Beside
the high classification accuracy, the main advantage of the
proposed algorithm is the low computational cost.

In the future, the developed techniques may be applied
to non-rigid bodies micro-Doppler signals like those received
from human targets.
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