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ABSTRACT

When working with real data, underlying parameters such as
the detection or clutter rates are generally unknown and pos-
sibly varying over time, however the right parametrisation is
crucial to extract proper statistics about the monitored objects.
In this article, a single cluster Probability Hypothesis Den-
sity (PHD) filter is used to jointly estimate the location and
number of a set of objects and the clutter rate over time. The
algorithm is verified on a simulated scenario designed to em-
ulate the challenging nature of Single-Molecule Localisation
Microscopy (SMLM) imaging sequences and demonstrated
on a similar scenario with real data.

Index Terms— Clutter estimation, multi-target track-
ing, single-cluster PHD filter, single-molecule localisation
microscopy.

1. INTRODUCTION

Multi-object estimation is important for many applications
that require processing sequences of data. Research on this
topic has developed since the 1970s, primarily motivated
by aerospace applications. Earlier works include Multiple
Hypothesis Tracking (MHT) [1] and Joint Probabilistic Data
Association (JPDA) [2], and more recently, several Random
Finite Set (RFS) approaches have been derived, primarily the
PHD [3–5] and the Cardinalized PHD (CPHD) filters [6].
These techniques have lately been developed for a much
wider range of applications including radar and sonar [7],
tracking vehicle clusters [8] or even dolphin chirps [9].

Accurate clutter models are of particular importance for
applications that are subject to high amounts of time-varying
noise or to low background-foreground contrast, such as
live-cell SMLM imaging which typically involves short-lived
objects on complex background. Widely used tracking ap-
proaches for such applications are mostly heuristic [10–12],
however those methods cannot cope with missed detections or
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false alarms. SMLM data is classically analysed in two steps:
first, the molecules of interest are localised in the image frame
using an image-based spot detection algorithm [13]. Based on
these image coordinates per frame, the data is linked across
time using a suitable multi-target tracking method. The first
step is left out of the scope of this paper and the focus is on
data linking.

Recent works have explored RFS methods for clutter es-
timation. In [14], the mean number of measurements is used
for the clutter rate and the spatial clutter distribution is created
fitting a Gaussian mixture onto the data; this method heavily
relies on the constance of the clutter distribution and on the
number of targets being significantly less than the number of
false alarms. In [15], the target population is divided into ac-
tual targets and clutter generators and both estimated accord-
ing to their own model. In [16], a similar concept of tracking
clutter generators with a PHD filter is used; they also propose
an Expectation-Maximisation approach to fit a Gaussian mix-
ture on a non-homogeneous clutter distribution. A PHD filter
with a negative binomial clutter model has been introduced
in [17]. It can account for clutter models whose variance in
the number of false alarms may be significantly higher than
the mean, however the clutter parameters are not estimated
but assumed given.

This paper presents a new approach for clutter estima-
tion using the single-cluster PHD filter [18, 19]. The latter is
already used in various applications such as camera calibra-
tion [20], Simultaneous Localisation And Mapping (SLAM)
[21], telescope drift correction [22], or microscope drift esti-
mation [23]. Similar approaches have been developed in [24]
using different likelihood functions, and [25] involves explicit
data association. Section 2 provides the formulation of the
method, stating the PHD recursion together with the likeli-
hood function and the variance of the filter update. In Section
3, the filter is tested on simulated and real data.

2. METHODOLOGY

2.1. The single-cluster PHD filter

The single cluster PHD filter which is the base of the proposed
algorithm has been studied in [18]. The underlying idea is to

978-1-5090-1172-8/17/$31.00 ©2017 IEEE 1087



regard the population of objects as a single group that shows
distinct global behaviour based on external influences on the
sensor. Two common applications are SLAM [21], where the
location of a moving sensor is determined using the features
surrounding it, or camera calibration [20], where objects ob-
served by two or more sensors give information about the rel-
ative position of the sensors. In this article, the single-cluster
approach is used to estimate the false alarm rate from a series
of SMLM images, assuming that point-like detections have
been previously extracted from the raw data [13]. Note that
several parameters could be estimated simultaneously within
this framework (e.g. the probability of detection), leading to
more complex algorithms. For the sake of simplicity, only the
false alarm rate is considered in this paper.

In the following, let S be the sensor state space which de-
scribes the unknown clutter parameter, i.e. the false alarm
rate. At time k, the multi-target configuration is repre-
sented by Xk = {x1k, . . . , x

nk

k } ⊆ X where X is the
target state space and nk is the number of targets. Like-
wise, the collected observations at time k are represented by
Zk = {z1k, . . . , z

mk

k } ⊆ Z whereZ is the measurement space
and mk the number of measurements. The number of false
alarms is described by some clutter parameter λk at time k
(to be defined later). It is assumed that the clutter is generated
by the sensor independently of the multi-target configuration
so that the multi-target state and the clutter parameter can be
jointly estimated with the joint distribution

p(Xk, λk|Z1:k) = p(Xk|Z1:k, λk)p(λk|Z1:k). (1)

The aim is to estimate two different kinds of uncertainty,
namely the clutter parameter and the number and location of
the targets. Since the object state estimation is dependent on
the sensor output which is in turn affected by noise, the pro-
posed algorithm can be formulated conveniently as a hierar-
chical structure of two random processes. The parent process
estimates the clutter parameter λk while, conditioned on the
clutter parameter, the daughter process estimates the multi-
target state through a PHD filter.

2.2. The parent process: clutter estimation

The clutter parameter is assumed to be time-varying and
evolving through some Markov transition function tSk|k−1.
The likelihood of collecting sensor observation Z at time k,
given a clutter parameter λ, is described by the multi-object
likelihood `k(Z|λ) which depends on the multi-object con-
figuration estimated by the daughter process. With this, the
parent process is described by the following Bayes recursion:

pk|k−1(λ) =

∫
S
tSk|k−1(λ|λ̂)pk−1(λ̂)dλ̂, (2)

pk(λ|Zk) =
`k(Zk|λ)pk|k−1(λ)∫
S `k(Zk|λ̂)pk|k−1(λ̂)dλ̂

. (3)

2.3. The daughter process: multi-target estimation

The PHD filter does not propagate the full distribution
p(Xk|Z1:k, λk) but only the density of its first-order moment
measure – or intensity, or Probability Hypothesis Density –
namely µ(xk|Z1:k, λk). The intensity µ, integrated over an
arbitrary region B ⊆ X , gives the expected number of targets
within B [3].

Let ps,k(x) denote the state-dependent probability of sur-
vival at a given time k and denote by tk|k−1 the Markov tran-
sition of the target states from time k−1 to time k. The spon-
taneous birth of new targets at time k, assumed independent
from the existing targets, is modelled with a Poisson point
process with intensity µb,k. Similarly, let us write pd,k(x) for
the state-dependent probability of detection, and denote by
lk(z|x) the single-target association likelihood of measure-
ment z with target x at time k. The clutter process is assumed
Poisson with intensity λksc,k(z), where sc,k is the spatial dis-
tribution of the false alarms. The parameter λk, estimated by
the parent process, is thus the average number of clutter points
in the current time scan. In [17], a negative binomial clutter
model was assumed instead.

With this, the prediction and update equations of the PHD
filter, conditoned on some clutter rate λ, are given by [3]

µk|k−1(x|λ)

= µb,k(x) +

∫
X
ps,k(x̂)tk|k−1(x|x̂)µk−1(x̂|λ)dx̂, (4)

µk(x|Zk, λ)

= µφk(x|λ) +
∑
z∈Zk

µzk(x|λ)
λsc,k(z) +

∫
X µ

z
k(x̂|λ)dx̂

, (5)

with missed detection and association terms

µφk(x|λ) = (1− pd,k(x))µk|k−1(x|λ), (6)
µzk(x|λ) = pd,k(x)lk(z|x)µk|k−1(x|λ), (7)

for any measurement z ∈ Z.
Even though the PHD filter does not propagate higher-

order moments on the target process describing the multi-
target population, the variance of the updated target process-
can be computed at any time step k as [26]

vark(B|Zk, λ)

=

∫
B

µφk(x|λ)dx+
∑
z∈Zk

∫
B
µzk(x|λ)dx

λsc,k(z) +
∫
X µ

z
k(x|λ)dx

·
(
1−

∫
B
µzk(x|λ)dx

λsc,k(z) +
∫
X µ

z
k(x|λ)dx

)
,

(8)

in any region B ⊆ X of the state space. The statistics
µk(B|λ) yields the mean value of the estimated number
of target within B, while the statistics vark(B|λ) gives the
associated variance; both quantities will be used in the exper-
iments to assess the accuracy of the PHD filter.
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Finally, when the daughter process is a PHD filter, the
multi-object likelihood function `k, used in the parent process
update equation (3), is given by [18, 19, 21]

`k(Z|λ) = exp

[
−λ−

∫
X
pd,k(x)µk|k−1(x|λ)dx

]
·
∏
z∈Z

[
λsc,k(z) +

∫
X
µzk(x|λ)dx

]
.

(9)

3. EXPERIMENTS

The experiments are set in the context of SMLM where a set
of molecules of interest is observed through an optical micro-
scope. Each target is described by its position and velocity
coordinates in the image frame. From a filtering perspective,
the observation process combines the image acquisition and
the feature extraction in the manner of [13] so that the sensor
observtion provides information on the position coordinates
of the targets.

The parent process is implemented with a Sequential
Monte Carlo (SMC) or particle filter following [18]. We
further assume that the clutter parameter is constant over
time, and thus the Markov kernel tSk|k−1 is set to the identity
function. Therefore, the Monte Carlo (MC) particles do not
evolve and are initialised equidistantly on a range of admissi-
ble values for the clutter parameter λ. The daughter process is
implemented with a Gaussian Mixture (GM) PHD filter [4].

3.1. Simulated data

The proposed method is first validated on simulated data. The
following parameters are chosen arbitrarily without loss of
generality since the same are used for simulation and filtering.

The target state space corresponds to a 50 µm-wide square
image frame. The target states evolve according to a Near-
Constant Velocity (NCV) model, i.e. the object motion is
subject to an acceleration noise with standard deviation
0.1 µms−2 on both axes. The average number of newborn
targets is set to 0.5 and their initial state follows a Gaussian
distribution, centred on the image frame with no velocity
with standard deviation of 25 µm and 0.5 µms−1 on the posi-
tion and velocity components, respectively. The probabilities
of survival ps,k and detection pd,k are set to the constants
0.98 and 0.99, respectively. Each detected target produces
a measurement, composed of the two position coordinates
corrupted with Gaussian white noise with standard deviation
0.5 µm on both axes. The clutter rate λ is set to 10. The set
of observations Zk at time k is directly generated from the
modelling parameters. The parent process is initialised with
100 MC particles, with equal weights and evenly spread on
the interval [1, 50], covering the admissible values for λ.

Fig. 1a depicts the estimation of the number of targets
and the clutter rate across the scenario, averaged over 100
MC runs. We see that estimated clutter rate converges rapidly

to the true value 10. In addition, the true number of targets
stays within a 2σ-confidence region around the mean esti-
mated value, where the standard deviation σ is given by the
filter using Eq. (8). This suggests that the PHD filter is ac-
curate and not overconfident in the estimation of the num-
ber of targets. Fig. 1b shows a typical output of the filter at
time k = 60. It shows that at this stage in the scenario the
probability mass function of the estimated clutter parameter
λ is concentrated around the true value 10, consistent with
the evolution of the estimated λ shown in Fig. 1a. The es-
timated number of targets is also close to the true value 14;
as expected, a daughter process conditioned on a higher clut-
ter rate yields a lower estimated number of targets since the
PHD filter expects a higher number of false alarms among the
collected measurements.

3.2. Real data

The real data was generated using PALM with Total Inter-
nal Reflection Fluorescence (TIRF), acquired on an Olympus
Cell Excellence wide-field microscope fitted with a 512 px
by 512 px EMCCD camera. The sample shows SNAP25 pro-
teins labelled with PA-mCherry in human embryonic kidney
cells. Fiducial markers are present in the image, generated
by gold beads embedded in the cover slip. The pixel width
is 106 nm, resulting in a square field of view of 54.272 µm
width. The images were captured at a 16.6 Hz sampling rate
which corresponds to an exposure time of 60ms. One hun-
dred frames were used and measurements were extracted by
applying the à trous wavelet transform and finding the cen-
troids of the enhanced blobs [13]. We cannot assess the out-
put of the filter through a direct comparison with the ground
truth since the latter is unavailable. Instead, we analyse the
correlation between the variations in pixel intensity in the im-
age and the variations in clutter intensity in the observation
space. For this purpose, the image sequence was processed
in a whole and cropped to a square subframe with a width of
200 px which corresponds to 21.2 µm (see Fig. 2).

For filtering purposes, the target motion model is de-
scribed with a NCV model as in the previous section; because
the SNAP25 proteins are expected to move very little, the
acceleration noise is set to 1.06 nm s−2. The probability of
survival is set to 0.95. The average number of newborn targets
is set to 5 for the cropped frame and 20 for the whole frame.
Their initial state follows a Gaussian distribution, centred on
the image frame and with no velocity, with standard deviation
of 10.6 µm and 27.136 µm on the position components for
the cropped and whole frame, respectively, and 5.3 nm s−1

on the velocity components. The probability of detection is
set to 0.95 and the measurement noise is 212 nm on both
components. Because we have little knowledge on the true
clutter rate, the parent process is initialised with 200 MC
particles with equal weights and evenly spread on the interval
[1, 100], covering a wider range of admissible values for λ.
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(a) Filter output over the whole scenario, averaged over 100 MC
runs. The red plot shows the mean (—) and two standard deviations
(�) of the estimated number of targets against the true number of
targets (—). The blue plot shows the mean (—) and two standard de-
viations (�) of the estimated clutter rate against the true clutter rate
(- - -). The dashed grey line shows the corresponding two standard
deviation confidence region for the estimation of a Poisson distribu-
tion, computed from the Cramér-Rao Lower Bound.
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(b) Filter output at time k = 60. The red plot shows the mean (—)
and standard deviation (�) of the estimated number of targets against
the true number of targets (—). The blue plot shows the probability
mass function of the estimated clutter rate (true clutter rate: 10).

Fig. 1: Simulation results.

(a) The whole frame. (b) The cropped frame.

Fig. 2: Real data: PALM images showing SNAP25 activity.

Fig. 3 shows the results for the whole and the cropped
frame. The fluctuating intensity µk illustrates the short life-
span of the molecules, rendering the discrimination between
short-lived targets and false alarms challenging. The esti-
mated clutter rate in the whole frame converges to 42.4 which
corresponds to 0.014 false alarms per µm2. On the other hand,
the cropped sequence yields a clutter rate of 9.0 which corre-
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(a) Results for the whole frame.
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(b) Results for the cropped frame.

Fig. 3: Results for the real data. The red plot shows the mean
(—) and standard deviation (�) of the estimated number of
targets. The blue plot shows the mean (—) and standard de-
viation (�) of the estimated clutter rate.

sponds to 0.020 false alarms per µm2. This discrepancy is
consistent with the localisation of the cropped image, situated
in an area with slightly more activity than the image periphery
due to illumination settings.

4. CONCLUSION

This paper exploits a single-cluster PHD filter for the joint es-
timation of the multi-target configuration and the sensor clut-
ter rate in multi-target detection and tracking. The algorithm
is tested on simulated and real data in the context of Single-
Molecule Localisation Microscopy, in which the number of
clutter points is assumed Poisson with unknown rate. The
results on simulated data show that the estimated clutter rate
rapidly converges to the true value, while the underlying PHD
filter provides an accurate estimation of the number of targets
in the scene. While ground truth is not available for the as-
sessment of the filter, the variation in the estimated clutter rate
in the whole image and a cropped subframe appears consis-
tent with the fluorescence activity.
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