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The independent vector analysis algorithm can theoretically avoid the
permutation problem in frequency domain blind source separation by
using a multivariate source prior to retain the dependency between
different frequency bins of each source. A super-Gaussian multivariate
Student’s t-distribution is adopted as the source prior to model the
spectrum of speech signals and to mitigate imprecise variance know-
ledge as is commonplace in non-stationary signal processing.
Moreover, the new multivariate source prior can be interpreted as a
joint distribution constructed by a t-copula, which can describe the
nonlinear inter-frequency dependency. Experimental results using 50
speech mixtures formed from the TIMIT database confirm the ad-
vantages of the proposed algorithm.
Introduction: Independent vector analysis (IVA) is a frequency domain
method that solves the convolutive blind source separation problem
(CBSS) [1]. The IVA method adopts a dependent multivariate
super-Gaussian distribution as the source prior, instead of a univariate
distribution used by traditional CBSS approaches. Thus, the IVA
method can theoretically avoid the permutation ambiguity by exploiting
certain statistical inter-dependency between frequency bins within each
source vector, while removing the dependency between different
sources. However, the form of the multivariate source prior should
not always be fixed due to various types of dependency within the
sources. In this Letter, we introduce a multivariate student’s
t-distribution as the source prior. It has a heavier tail than Gaussian dis-
tribution when the degree of freedom is small, which is required to
model the spectrum of speech signals [2]. Moreover, it can be expressed
as a scaled mixture of multivariate Gaussian distributions and thereby
retain the variance dependency between different frequency bins as in
the original IVA source prior without having precise knowledge about
the variance, so important when modelling non-stationary signals [3].
The proposed multivariate source prior can also be interpreted as a
joint distribution constructed by a t-copula with marginal univariate stu-
dent’s t-distribution. It is well known that copulas are used to describe
nonlinear dependency [4]. Thus the multivariate student’s t source
prior can introduce exactly the t-copula to describe such dependency
between different frequency bins.

IVA using multivariate student’s t source prior: For the CBSS problem,
the basic noise-free model in the frequency domain is described as

x(k) = H(k)s(k) (1)

ŝ(k) = W(k)x(k) (2)

where x(k) = x(k)1 , x(k)2 , . . . , x(k)m

[ ]T
, s(k) = s(k)1 , s(k)2 , . . . , s(k)n

[ ]T
and

ŝ(k) = ŝ(k)1 , ŝ(k)2 , . . . , ŝ(k)n

[ ]T
are the observed signal vector, the source

signal vector and the estimated source vector, respectively, in the fre-
quency domain, and (·)T denotes vector transpose. H (k) is the mixing
matrix with m × n dimensions, and W (k) is the unmixing matrix
with n ×m dimensions. It is assumed that m = n in this Letter. The
index k = 1, …, K denotes the kth frequency bin.

The IVA method adopts the Kullback-Leibler divergence between the
joint probability density function p ŝ1 · · · ŝn( ) and the product of marginal
probability density functions of the individual source vectors

∏
q ŝi( ) as

the cost function:

J = KL p ŝ1 · · · ŝn( )||
∏

q ŝi( )
( )

=
∫
p ŝ1 · · · ŝn( ) log p ŝ1 · · · ŝn( )∏

q(ŝi)
dŝ1 · · · dŝn

= const−
∑K
k=1

log det W(k)
( )∣∣ ∣∣−∑n

i=1

E log q ŝi( )[ ]
(3)

where E[·] denotes the statistical expectation operator, det(·) is the
matrix determinant operator, K is the number of frequency bins and
const denotes a constant number. The dependency between different
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source vectors should be removed but the dependency between the com-
ponents of each vector can be retained, when the cost function is
minimised.

The gradient descent method is used to minimise the cost function. By
differentiating the cost function J with respect to the coefficients of the
separating matrices w(k)

ij , the gradients for the coefficients can be
obtained as follows:

Dw(k)
ij = − ∂J

∂w(k)
ij

= w(k)
ij

( )−†

− E w(k) ŝ
(1)
i · · · ŝ(k)i

( )
x∗(k)j

[ ] (4)

where (·)† and (·)* denote the Hermitian transpose and the conjugate
operators, respectively, and w(k)(·) is a nonlinear score function, which
is given as follows:

w(k) ŝ
(1)
i · · · ŝ(k)i

( )
= −

∂ log q ŝ
(1)
i · · · ŝ(k)i

( )

∂ŝ
(k)
i

(5)

For traditional CBSS approaches, the scalar Laplacian distribution is
widely used for the source prior. However, the resultant nonlinear score
function is a univariate function, which cannot keep the dependency
between different frequency bins for each source. Therefore, a multi-
variate score function that is derived from the multivariate source
prior is needed to retain the dependency between different frequency
bins.

Our contribution is to propose the multivariate student’s t-distribution
as the source prior that takes the form

q si( )/ 1+ si − mi

( )†
S−1

i si − mi

( )
v

⎛
⎝

⎞
⎠

−(v+K/2)

(6)

where μi and Σi are, respectively, the mean vector and a positive definite
matrix of scale parameters, and v represents the degrees of freedom. We
assume that the mean vector is a zero vector and Σi is an identity matrix.
As such, with appropriate normalisation the nonlinear score function in
(5) becomes

w(k) ŝ
(1)
i · · · ŝ(k)i

( )
= ŝ

(k)
i

1+ (1/v)
∑

ŝ
(k)
i

∣∣∣
∣∣∣2

(7)

which is also a multivariate function as in the original IVA score func-
tion. All the frequency bins are accounted for during the learning
process. Thus it can retain the inter-frequency dependency and
provide the v parameter to tune the variance and leptokurtic nature of
the model as in (6). With decreasing v, the tails become heavier and a
suitable value can be estimated by the tail-index estimation method [5].

On the other hand, we can interpret this source prior in terms of
copulas. Copulas are widely used for modelling the dependency
between the marginal distributions of a joint distribution. The IVA
algorithm requires a multivariate source prior that can retain the de-
pendency between different frequency bins, so the copula is appropriate
to model such dependency. We assume that the marginal distribution
obeys a univariate student’s t-distribution

q s
(k)
i

( )
= G((v+ K)/2)���

vp
√

G(v/2)
1+

s
(k)
i

∣∣∣
∣∣∣2

v

⎛
⎜⎝

⎞
⎟⎠

(v+1/(2))

(8)

where Γ(·) is the Gamma function. It is a super-Gaussian distribution,
and is appropriate to model the spectrum of a speech signal.

According to [4], when using a copula to model the dependency, the
joint distribution is established by

q s
(1)
i , . . . , s

(K)
i

( )
= c u1, . . . , uK( )

∏K
k=1

q s
(k)
i

( )
(9)

where c(u1,…, uK) is the copula density function and uk are the marginal
distribution functions.

In this Letter, we use a t-copula to model the dependency between
different frequency bins, and the correspondent t-copula density
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function is [6]

c(u1, . . . , uK ) = G((v+ K)/2)G(v/2)K−1

|S|(1/2)G((v+ 1)/2)K

∏K
k=1 1+ |yk |2/v

( )( )(v+1/(2))

1+ y†S−1
y/(v)

( )( )(v+K/(2))

(10)

where yk is the inverse distribution function of uk. Thus by combining
(8), (9) and (10), we can obtain the proposed multivariate student’s
t-distribution as the source prior for IVA.

Experimental results: In this simulation, we chose different speech
signals from the TIMIT dataset [7]. Each speech signal was approxi-
mately 7 s long. The image method [8] was used to generate the room
impulse responses, and the size of the room was 7 × 5 × 3 m3. The
DFT length was 1024 and RT60 = 200 ms. We used a 2 × 2 mixing
case, for which the microphone positions are [3.48, 2.50, 1.50] m and
[3.52, 2.50, 1.50] m, respectively. The sampling frequency was 8 kHz.
The separation performance was evaluated objectively by the
signal-to-distortion ratio (SDR) and the signal-to-interference ratio
(SIR) [9]. We found empirically that v = 4 is the appropriate value for
the degrees of freedom parameter for the speech signals under test.
Fig 1 shows the experimental setting.

7 m

microphones
1.5 m 5 m

60°

45°
30°–30°

0°

Fig. 1 Plan view of source and microphone positions in room environment

We chose two different speech signals randomly from the TIMIT
dataset and convolved them into two mixtures. Then the original IVA
method and the proposed IVA method with the new source prior were
used to separate the mixtures, respectively. We changed the source
positions to repeat the simulation. For every pair of speech signals,
three different azimuth angles for the sources relative to the normal to
the microphone array were set for testing; these angles were selected
from 30°, 45°, 60° and − 30° as shown in Fig 1. After that, we chose
another pair of speech signals to repeat the above simulations. In
total, we used 10 different pairs of speech signals, and repeated the
simulation 30 times at different positions. Table 1 shows the average
separation performance for each pair of speech signals in terms of
SDR and SIR, respectively.
ELECTRON
Table 1: Separation performance comparison in SIR (dB)
I

Mixtures
CS LETT
Original (SDR)
ERS 1st
Proposed (SDR)
August 20
Original (SIR)
13 Vol. 4
Proposed (SIR)
Mixture 1
 12.27
 18.64
 14.08
 20.83
Mixture 2
 8.88
 12.59
 10.72
 14.27
Mixture 3
 15.57
 17.09
 16.98
 18.77
Mixture 4
 18.10
 19.50
 20.14
 20.78
Mixture 5
 16.84
 19.53
 19.53
 21.45
Mixture 6
 18.81
 20.17
 20.30
 21.47
Mixture 7
 15.94
 17.28
 17.88
 18.97
Mixture 8
 9.97
 11.73
 12.08
 12.77
Mixture 9
 11.68
 12.40
 14.42
 14.97
Mixture 10
 18.80
 19.91
 20.28
 20.95
The results shown in Table 1 confirm the advantage of the proposed
IVA method that adopts the new multivariate source prior. We formed
50 different mixtures in total from the TIMIT database to test the separ-
ation performance, and the average SDR and SIR improvements were
1.3 and 1.1 dB, respectively.

Conclusion: In this Letter, we have proposed a new IVA method by
choosing a multivariate student’s t-distribution as the source prior.
This new super-Gaussian source prior can model the spectrum of a
speech signal even when the knowledge of its variance is limited. The
experimental results confirm that the proposed IVA method can
improve separation performance significantly. Future work will consider
schemes for the estimation of the degrees of freedom parameter v.
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