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ABSTRACT

In this work, we consider the problem of synchronising separately

located transmitters and a staring array receiver that also has a local

transmitter. The acknowledged benefits of using separate transmit-

ters in active sensing are often undermined by the difficulty in ac-

curate synchronisation of the receiver and the transmitters. In this

work, we propose a solution that is based on measurements from

non-cooperative objects in the illuminated region. We formulate the

problem as parameter estimation in a state space model with individ-

ual transmitter channel data cubes as measurements. For maximum

likelihood estimation, we use an expectation maximisation type iter-

ative bound optimisation using distributions found by track-before-

detect together with explicit formulae derived here for the related

score function for chirp waveforms. We demonstrate that the pro-

posed approach is capable of achieving very high accuracy with er-

rors on the order of small fractions of the pulse width thereby en-

abling coherent processing in bi-static channels.

Index Terms— Multi-static radar, synchronisation, marginal

likelihood, track-before-detect, expectation maximisation.

1. INTRODUCTION

Active sensing systems with geographically dispersed transmitters

such as widely separated multiple-input multiple-output (MIMO)

radars [1] have the potential to deliver significantly improved per-

formance in detecting objects and resolution in locating them owing

to the diversity in the aspect angles the objects are illuminated and

reflections are observed from [2]. These highly desirable features

can only be practically enabled if key configuration parameters can

be found easily and accurately. An important challenge in this re-

spect is the synchronisation of separated transmitters and receiver

elements [3], i.e., finding the differences between the receiver time

reference and that of the transmitters so as to accurately map the

receiver time axis onto spatial locations.

In this work we address synchronisation of a staring array

receiver with remote transmitters which emit orthogonal probing

waveforms thereby inducing independent bi-static reflection chan-

nels at the receiver. There is also a co-located transmitter in-synch

with the receiver in the setup we consider, together with which a

multi-static MIMO configuration is obtained.

The processing at the array signal separates the reflection chan-

nels by demodulation, matched filtering and sampling. Each sample

corresponds to a time-of-flight value for the probing waveform. If
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the time reference shift of the transmitters with respect to the re-

ceiver are known precisely, these values can be further mapped to

precise spatial (bi-static) range values [3]. Ambiguity in these quan-

tities significantly deteriorates the system performance [4].

Our approach is based on a state space model that captures the

generation of these tensor valued measurements (see, e.g. [5]) in

consecutive coherent processing intervals (CPIs). Estimation of re-

spective parameters including synchronisation terms in this model

can be treated as parameter estimation in multi-sensor state space

models [6, 7] in which each channel of the multi-static setup acts as

a distinct sensor with the co-located transmitter’s channel (i.e., the

mono-static channel) setting the reference. The parameter likelihood

of the synchronisation terms has the kinematic state trajectory of the

reflector object and the reflectivity coefficients as the latent variables.

We find the ML estimate using expectation maximisation (EM) [8]

in which we approximate the expectation using particle representa-

tions of the state distributions conditioned on the data cubes. This

is known as track-before-detect (see, for example, [9,10]), and, here

implies that the synchronisation process uses the kinematic object

trajectory as a reference for estimating time reference shifts in differ-

ent reflection channels. We derive explicit formulae for the gradient

of the expectation to be maximised and use gradient ascent itera-

tions at each EM step (see, e.g., [11] for details of EM in state space

models, and, [12] in sensor registration)

Other alternatives include the use of atomic clocks and/or ex-

ternal references such as GPS signals (see, e.g., [13]). Such a pro-

cess is tedious and requires expensive equipment, yet, prone to er-

rors due to, e.g., inaccuracies in locating transmitter and receiver

elements [3]. A data driven solution consisting of processing at the

receiver side is more preferable. One such approach with array re-

ceivers is to digitally divert a beam towards a transmitter to recover

the transmitted signal (see, e.g., [14, 15]). This necessitates transmit

power be spent to guarantee a direct link towards the receiver which

might not be desirable or feasible. The proposed approach removes

such restrictions and operates using reflections from opportunistic

objects in the illuminated region and local processing only.

Synchronisation terms can be decomposed into a delay of an

integer multiple of the pulse width and a sub pulse-width portion

which has a phase ambiguity effect even in the perfect knowledge of

the first term. The phase ambiguity undermines the benefits of coher-

ent processing [4], so, its estimation has also been the topic of recent

research. For example, in [16], the carrier phase differences between

remote transmitters and a local receiver is estimated using consen-

sus based algorithms. Our approach provides a more comprehensive

form of synchronisation and estimates both the shift in pulse trig-

gering times and carrier phase differences – with the latter blended

into the phase of the complex reflection coefficients which are esti-



mated during track-before-detect. As a result, the level of accuracy

achieved is on the order of a small fraction of the pulse width which

is sufficient for coherent processing in the bi-static channels [15].

The article is organised as follows: Sec. 2 gives the mathemat-

ical statement of the problem. In Sec. 3, we detail the proposed

synchronisation approach. Sec. 4 explains state and reflectivity es-

timation with the radar data cubes. We demonstrate the proposed

algorithm in Sec. 5. Then, we conclude in Sec. 6.

2. PROBLEM STATEMENT

Let us consider the geometry of the problem as illustrated in Fig. 1

and detail the array signal at the receiver. Here, transmitters use mu-

tually orthogonal waveforms of pulse duration Tp and bandwidth B.

N pulses are emitted with a pulse repetition interval (PRI) of T . The

reflector objects in the scene are assumed to remain coherent (i.e., re-

flectivity values in each channel remain constant) during this overall

NT seconds period known as a CPI. These transmission character-

istics are fully known at the receiver except the time reference shift

of the remote transmitters with respect to the receiver clock which

will be denoted by ∆tm for the mth channel.

The receiver array has L elements spaced by half the carrier

wavelength λc, i.e., d “ λc{2. Each element collects a superposition

of the noise background and reflected signals originating from the lo-

cal (mono-static) transmitter and the remote (bi-static) transmitters.

The processing chain for the mth channel begins with demodulation

followed by matched filtering with the mth probing waveform which

completely suppresses the contributions of the other channels owing

to the orthogonality of the waveforms used. The output for the array

elements are then sampled with a period that is equal to the the pulse

duration Tp. A total of Γ samples are collected for each of the N

pulse at each of the L elements. For the range bin r, we stack the

columns of the data cube and form a LN ˆ 1 data vector which is a

function of the synchronisation term ∆tm and the kinematic state X:

Zmprq “ αmsmpr,X,∆tmq ` nmprq, (1)

where sm is the reflected signal model that will be detailed later

in this section, αm is the complex reflection coefficient in the

mth channel, and, X “ rx, y, 9x, 9ysT is the kinematic state of

the reflector where rx, ysT is its location, r 9x, 9ysT is its velocity,

and T denotes vector transpose. The noise background is mod-

elled with a circular symmetry complex Gaussian random vector

nmprq „ CN p.; 0,Σmq of zero mean and covariance Σm.

The problem we consider is to estimate the vector of unknown

time reference shifts as denoted by the synchronisation term, i.e.,

∆t fi r∆t1 “ 0,∆t2, . . . ,∆tM s (2)

using the receiver measurements collected in all M channels for a

time window of length t, i.e.,

Z fi rZ1,1:t, ¨ ¨ ¨ ,ZM,1:ts ,

Zm,k fi
“

Zm,kp1q, ¨ ¨ ¨ ,Zm,kpΓq
‰

, (3)

where the last line denotes the mth channel measurements at time k

as a concatenation of the measurement vectors in (1).

In the rest of this article, we detail the synchronisation term es-

timation by solving

∆t̂ “ argmax
∆t

lpZ|∆tq, (4)

where the marginal likelihood lpZ|∆tq further decomposes as

lpZ|∆tq “
t

ź

k“1

lpZk|Z1:k´1,∆tq (5)

Fig. 1: Geometry of the problem: Both polar and Cartesian coordi-

nate variables are depicted.

by the chain rule of probabilities.

Before we continue with further elaboration on the maximisation

of (5) in Sec. 3, we provide details of the signal model in (1).

2.1. Signal model

The reflected signal model in (1) is given by

smpr,X,∆tmq fi e
´jωc∆tm

sspθpXqq b stpτmpXq,ΩmpXqq

ˆΛmprTp ´ τmpXq ´ ∆tmq (6)

sspθq “
”

1, e
´jπ sin θ

, . . . , e
´jpL´1qπ sin θ

ıT

. (7)

st pτm,Ωmq fi e
´jωcτm ˆ

”

1, e
jΩm , . . . , e

jpN´1qΩm

ıT

, (8)

where θpXq, τmpXq, and ΩmpXq are the angle of arrival, the time-

of-flight (TOF), and the angular Doppler shift, respectively, associ-

ated with X (Fig. 1). Here, ss is the spatial steering vector, st is

the temporal steering vector, and, b denotes the Kronecker product

operator. Λmp¨q is the auto-correlation of the mth waveform.

3. MAXIMUM LIKELIHOOD ESTIMATOR FOR

SYNCHRONISATION

It is not straightforward to find a tractable solution for (4), for ex-

ample, find the score function for (5) and use gradient descent for

solving the ML estimation problem. Instead, lower bounds can be

maximised iteratively such that the gap with the logarithm of the

original likelihood tends to zero with the maximisation leading to

the ML estimate looked for [8]. This approach is known as expecta-

tion maximisation and involves iteratively solving the optimisation

problem given by

∆t
pj`1q “ argmax

∆t
Qp∆t,∆t

pjqq (9)

Qp∆t,∆t
pjqq 9

ż ż

log lpZ1:t|X1:t,α1:t,∆tq

ˆppX1:t,α1:t|Z1:t,∆t
pjqq dX1:t dα1:t,

9
t

ÿ

k“1

ż ż

log lpZk|Xk,αk,∆tq (10)

ˆppαk|ZkqppXk|Z1:t,∆t
pjqq dXk dαk.

The measurement likelihood term in (10) factorises into channel

likelihoods due to the independence of noise terms. It also satisfies

a locality property in that the number of range bins associated with

Xk is limited by the support of the auto-correlation Λm in (6) which

is of 2Tp seconds width , i.e.,

lpZk|Xk,αk,∆tq

9
M
ź

m“1

ź

rPEmpXk,∆tmq

lpZm,kprq|Xk, αm,k,∆tmq, (11)



where Em is the set of range bins associated the reflector kinematic

state Xk and given by

ẼmpXk,∆tmq “

$

&

%

trm, rm ` 1u rmTp ă τmpXkq ` ∆tm
trmu rmTp “ τmpXkq ` ∆tm
trm, rm ´ 1u rmTp ą τmpXkq ` ∆tm

,

(12)
and

rm “

„

τmpXkq ` ∆tm

Tp



is the range bin corresponding to the TOF τmpXmq and time refer-

ence shift ∆tm.

Thus, the mth channel likelihood can easily be found by using

the noise distribution in the signal model in (1), i.e.,

l pZm,kprq|X,αm,k,∆tmq

“ CN
´

Zm,kprq;αm,ksmprk, Xk,∆tmq,Σm

¯

. (13)

The equation above relates the signal model and the unknowns

including the synchronisation terms through (11) and (12) to the

expectation in (10). Evaluation of this latter term, however, is not

straightforward due to the marginalisations involved. We tackle with

marginalisation over the state variable using Monte Carlo integra-

tion [17] with samples generated from ppXk|Z1:k,∆tpjqq (instead

of the smoothing distribution ppXk|Z1:t,∆tpjqq in (10)) by using

Bayesian recursive filtering with the radar data cube likelihoods

which is detailed in Sec. 4. With regards to the reflection coeffi-

cients, we use the Empirical Bayesian [18] perspective: We find

the ML estimate α̂k using expectation maximisation (EM) within

Bayesian state estimation (Sec. 4) and select [15]

ppαk|Zkq Ð δα̂k
pαkq, (14)

where δ is Dirac’s delta distribution, and, Ð denotes assignment

(i.e., the distribution on the left hand side is asserted to be the Dirac’s

delta on the right hand side).

Given this empirical prior together with a set of particles

tXppq
k , ζ

ppq
k uPp“1 representing the state estimation, and, consider-

ing (13), the expectation in (10) is (stochastically) approximated by

Q̃p∆t,∆t
pjqq9

1

P

t
ÿ

k“1

P
ÿ

p“1

M
ÿ

m“1

ÿ

rPEpX
ppq
k

,∆tmq

log CN pZm,kprq; α̂m,ksmpr,X
ppq
k ,∆tmq,Σmq, (15)

where α̂m,k is the ML estimate of αm,k in (16) (see, the top of next

page). Here, ξpi´1q is a state posterior conditioned on the previously

found value of the reflection coefficient in [15].

Next, we consider maximisation of Q̃p∆t,∆tpjqq in (9) and find

the gradient of (15) with respect to the synchronisation vector for

chirp waveforms [3]. Then, we use iterative gradient descent [19]

with this gradient. The iterations at the jth step of EM start with an

initial synchronisation vector ∆t
pj,0q “ t∆t

pj,0q
m uMm“2, and updates

∆t
pj,iq by

∆t
pj,iq “ ∆t

pj,i´1q ` µ∇Q̃p∆t,∆t
pjqq|

∆t“∆tpj,i´1q , (17)

where µ is a step size parameter, and ∇Q̃ is given by using the partial

differentials

∇Q̃ “ r
BQ̃

B∆tm
sMm“2 (18)

which are derived for chirp auto-correlations and given explicitly in

(19) at the top of next page. In this expression,

s̃mp∆tmq fi smpr,X,∆tmq,

s
1

mpXq fi sspθpXqq b stpτmpXq,ΩmpXqqΛmpt
1

q,

t
1

fi prTp ´ τmpXq ´ ∆tmq, and

Λmpt
1

q “ p1 ´
|t

1
|

Tp

qsincpπBt
1

p1 ´
|t

1
|

Tp

qq,

where Λmpt
1

q is the auto-correlation of a chip waveform, and sinc

denotes the sinc function. These iterations are repeated until the

condition ‖ ∆t̂
pj,iq ´ ∆t̂

pj,i´1q ‖ ă ǫ, is satisfied, where ‖.‖
denotes the Euclidean norm.

4. BAYESIAN FILTERING OF THE RADAR DATA CUBES

In this section, we consider sampling from the filtering distribu-

tion ppXk|Z1:k,∆tpjqq for evaluating (15) as explained in Sec. 3.

The object trajectory X1:t is modelled as a Markov state space

model [20]. Then, Xk is sequentially estimated by using Bayesian

recursive filtering [20] which consists of a prediction and an update

stage. At time step k, the prediction stage is given by

ppXk|Z1:k´1,∆t
pjqq“

ż

ppXk|Xk´1qppXk´1|Z1:k´1,∆t
pjqqdXk´1. (20)

Here, ppXk|Xk´1q is the Markov transition density selected as

ppXk|Xk´1q “ N pXk;FXk´1, Qq, where F models constant

velocity motion, and Q is the covariance matrix specifying the level

of the process noise modelling unknown manoeuvres.

In the update stage this prediction is multiplied with the mea-

surement likelihood and all other variables are marginalised out, i.e.,

ppXk|Z1:k,∆t
pjqq9

ż

αk

lpZk|Xk,αk,∆t
pjqq

ˆppαkqppXk|Z1:k´1,∆t
pjqqdαk, (21)

where ppαkq is the a priori density for the reflection coefficient.

The marginalisation of the reflection coefficients, however, is not

straightforward and a reasonable prior is not always available. In-

stead, we use an empirical Bayes approach [18] as discussed in

Sec. 3, and rewrite (21) as follows:

ppXk|Z1:k,∆t
pjqq “

ż

αk

ppXk|Z1:k,αk,∆t
pjqqppαk|Zkqdαk. (22)

Here, the second term inside the integration is similar to a prior

for the reflection coefficients. Because this prior is conditioned on

the measurements, more probability mass should be concentrating

around the maximum likelihood (ML) estimate of this value which

is the rationale behind (14).

For realising the recursive filtering, a sequential Monte Carlo

(SMC) approach known as the particle filter is used [21]. In par-

ticular, a bootstrap filtering approach is used for estimating the

object trajectory. Suppose we have a set of weighted samples,

or, particles, representing the state posterior in the previous step

i.e.,
!

X
ppq
k´1

, ζ
ppq
k´1

)P

p“1

. In the prediction stage at the time step k,

we obtain P particles as the set of
!

X
ppq
k|k´1

, ζ
ppq
k|k´1

)P

p“1

by us-

ing X
ppq
k|k´1

„ pp ¨ |X
ppq
k´1

q sampled from the Markov transition

realising the prediction stage in (20).



α̂m,k “

řP

p“1

ř

rPEpX
ppq
k

q
ξ

pi´1q
p sm,kpr,X

ppq
k|k´1

,∆tmqHΣ´1
m Zm,kprq

řP

p“1

ř

rPEpX
ppq
k

q
ξ

pi´1q
p sm,kpr,Xppq

k|k´1
,∆tmqHΣ´1

m sm,kpr,Xppq
k|k´1

,∆tmq
. (16)

BQ̃p∆t,∆t
pjq
m q

B∆tm
“

1

P

P
ÿ

p“1

t
ÿ

k“1

ÿ

rPEpX
ppq
k

q

”2
Bs̃mp∆tmqH

B∆tm
Σ´1

m Zmprq ˆ ps̃mp∆tmqHΣ´1
m Zmprqq

s̃mp∆qHΣ´1
m s̃mp∆qH

´
|s̃mp∆tmqHΣ´1

m Zmprq|2

ps̃mp∆qHΣ´1
m s̃mp∆qHq2

ˆ p2
Bs̃mp∆tmqH

B∆tm
Σ

´1

m s̃mp∆tmqq
ı

(19)

Bs̃m
B∆tm

“ ´jωce
´jωc∆tm

s
1

mpXppq
k|k´1

qΛmpt
1

q ` e
´jωc∆tm

s
1

mpXppq
k|k´1

q
” sinpπBpt

1

qp1 ´ |t
1
|

Tp
qq

πBpt1 q2
`

cospπBpt
1

qp1 ´ |t
1
|

Tp
qqp |t

1
|`pt

1
qt

1

Tp
´ 1q

t
1

ı

Fig. 2: Transmitted signal parameters for M “ 4 transmitters: ∆t2,

∆t3 and ∆t4 are the synchronisation terms for remote channels.

In the update stage, the same sample set is used to represent

the state posterior in (21). The weights of these samples need to be

adjusted using the measurement likelihood, i.e.,

ζ
ppq
k “

ζ̃
ppq
k

řP

p1“1
ζ̃

pp1q
k

, ζ̃
ppq
k “ ζ

ppq
k|k´1

lpZk|X
ppq
k , α̂k,∆t̂

pjqq, (23)

After finding the normalised weights in (23), we test degeneracy of

the weighted particles. The degeneracy test is performed by finding

the number of effective particles and comparing it with a thresh-

old. When this test value is less than the threshold, we perform re-

sampling (see, e.g., [21]). Using the above particle filter, the object

state Xk at the kth CPI is estimated by using the empirical weighted

average, i.e.,

X̂k “
P
ÿ

p“1

ζ
ppq
k X

ppq
k|k´1

, (24)

where X̂k denotes the estimated object state Xk.

Iteration
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Fig. 3: Example: (a) RMSE of estimates of ∆t, (b) Histogram of

∆t̂ for 100 experiments in comparison with the true ∆t (red line)

and ˘Tp boundaries (dashed red lines).

5. EXAMPLE

In this section, we demonstrate the proposed algorithm through an

example. We consider a scenario with M “ 4 transmitters, one

of which is co-located with a ULA receiver at the origin of the 2D

Cartesian plane, and, the other transmitters are located at r0, 500s,
r0, 1000s, and r500, 0s, respectively. The parameters of the trans-

mitted pulses are shown in Fig. 2. Here, ∆t “ t∆tmuM“4
m“2 denote

the synchronisation terms. In the surveillance region, an object with

an initial state of X0 “ r1000m, 1000m, 10m{s, 50m{ss follows

an unknown trajectory. The receiver collects measurements in ac-

cordance with the signal model in (1) from M “ 4 channels.

We use the proposed algorithm to estimate the synchronisation

term ∆t with P “ 400 particles. These particles are initially se-

lected as a 20ˆ 20 element uniform grid within a resolution bin that

contains X0. The reflection coefficient for each channel is gener-

ated by a complex Gaussian density leading to an expected SNR of

10dB. Here, ∆t is a uniform random variable in 0 ă ∆t ă PRI .

Fig. 3(a) illustrates the root mean square error (RMSE) of a typ-

ical run of our algorithm detailed in Sec. 3 and 4. We compare these

error values with the Tp bounds (dashed red line). It is seen that

the errors of all the estimates of ∆t (see, the RMSEs of estimated

∆t̂2 (solid blue line), ∆t̂3 (solid green line), and ∆t̂4 (solid magenta

line), respectively, for M ´ 1 “ 3 remote channels) stay within a

small fraction of the total pulse width Tp after just a few iterations.

Next, we generate 100 measurement and estimate the synchro-

nise term using the proposed approach with a time window length

of t “ 50 CPIs (i.e., 1000 pulses). We repeat this for the 100 itera-

tions. Fig. 3(b) illustrates the histogram of the synchronisation term

estimation in comparison with the ground truth value of ∆t (solid

red line) and the ˘Tp pulse width boundaries (dashed red lines).

Here, the percentage of the estimates of ∆t̂ that are very close to the

true ∆t is 60 percent of the entire experiments, and, the ratio of the

estimation error with respect to Tp is 0.269.

6. CONCLUSION

In this work, we have proposed a novel approach for synchronisation

of remote transmitters and a staring array receiver using only local

data processing at the receiver end. The reference of synchronisa-

tion is trajectories of reflectors in the illuminated scene as acquired

through a co-located transmitter. The problem is solved jointly for

a multi-static radar configuration. Our approach avoids the use of

external reference signals such as GPS signals. The algorithm is

built upon ML parameter estimation in state-space models. In or-

der to realise the ML strategy, we have derived explicit formulae for

the gradients used in expectation maximisation iterations and devel-

oped sequential Monte Carlo samplers for track-before-detect with

the radar data cubes. We demonstrate that the proposed approach is

capable of achieving very high accuracy with errors on the order of

small fractions of the pulse width.
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