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The introduction of SAS (Synthetic Aperture Sonar) systems has been a game changer for 
underwater surveys. The gain in resolution, compared to traditional sidescan systems, created a 
paradigm shift as the information contained in a SAS image switches from shadows to 
highlights. SAS systems traditionally perform lawnmower type surveys, but the need for 
multiple views in MCM (Mine-Counter Measure) tasks, for example, opened the interesting 
problem of target re-acquisition patterns. In particular, circular patterns maximize the aperture, 
thus the overall image resolution of such system. The capability of CSAS (Circular SAS) has 
been demonstrated on the field, but the derivation of CSAS processing has not been fully 
developed. The non-uniform sampling of the circular pattern in particular introduces aberrations 
within the field of view and a non uniform PSF (Point Spread Function). We propose a spatial 
sampling scheme which makes the CSAS PSF perfectly uniform and keeps a constant SNR 
(Signal-to-Noise Ratio). We also derive analytically the CSAS PSF for offset points.

© 2017 Acoustical Society of America. https://doi.org/10.1121/2.0000585
Proceedings of Meetings on Acoustics, Vol. 30, 005003 (2017) Page 1



1. INTRODUCTION

SAS (Synthetic Aperture Sonar) and SAR (Synthetic Aperture Radar) share the same fundamental prin-
ciples: process coherently multiple acquisitions to form a large synthetic antenna. The output of coherent
processing is a very high resolution image. The required precision for the antenna location to enable coher-
ent processing is estimated at around λ/8, where λ represents the wavelength. This specific problem has
been proven to be particularly challenging for the underwater community. The micro-navigation problem
has been solved by Bellettini in1 thanks to the DPCA (Displaced Phase Centre Antenna) algorithm. SAS
has been a game changer for the community. For example, the increased resolution compared to more tradi-
tional systems has made ATR (Automatic Target Recognition) algorithms more reliable.2–4 In recent years,
new acquisition and re-acquisition patterns have emerged, in particular circular SAS acquisition also known
as CSAS. CSAR (Circular SAR) has been studied for few decades already5, 6 for various applications, and
the SAR community showed the great potential of such system. CSAS offers some challenges in term of
feasibility7 or image processing8, 9 and has not been fully investigated yet. The problem of the PSF (Point
Spread Function) of such system in particular remains. In10 , we derived the analytical expression of the
CSAS PSF for the central point, and proposed a resampling scheme to make the PSF uniform everywhere
within the full view area. The PSF problem raises the fundamental question of CSAS image formation and
is essential to develop any image improvement algorithm. In this paper, we extend the results from10 and
bring two main contributions:

• We derive in section 4.2 the analytical expression of the CSAS PSF for any point within the full view
area. Although a direct derivation is not trackable, we use a wavelet analysis to derive the exact PSF
expression. Numerical simulations validating our approach are also presented.

• We propose a new method to make the PSF uniform. The PSF uniformisation is presented in section 2
and is based on a refined resampling scheme which solves the problem of the non uniformity of the
SNR (Signal-to-Noise Ratio).

The paper is organised as follows: In section 2, we describe the configuration and notations related to
a CSAS system. We also derive the first resampling scheme and solve the SNR dependency problem. In
section 3, we calculate the analytical expression of the matched filter response. Section 4 is dedicated to
the PSF problem, we recall the PSF expression for the central point in section 4.1 before extending the PSF
calculation to an offset point in section 4.2.

2. CSAS CONFIGURATION

We consider a SAS system S performing a circle C centred in O and with a radius R. The full view area
is described as the area where each point is insonified by S during the full revolution. Assuming that the
trajectory is a circle, the full view area as also a circle centred in O whose radius RFV is function of R and
the SAS beamwidth ϕ, RFV = R sin(ϕ/2). Figure 1 pictures the geometry of the problem. The full view
area is highlighted in blue.

Considering now the point O’ within the full view area. The distance OO’ can be written as αR where
α ≤ sin(ϕ/2). When the system S is in A, it has traveled θR from it original position, but it sees the point
O’ at an angle θ′. The two angles θ and θ′ are linked through the following set of equations

θ′ = h(θ) = sgn(θ) cos−1

(
cos θ − α√

1 + α2 − 2α cos θ

)
and (1)

θ = h−1(θ′) = sgn(θ′) cos−1
(
α sin2 θ′ + cos θ′

√
1− α2 sin2 θ′

)
. (2)
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Figure 1: Isomorphism between the real SAS trajectory, C, and virtual trajectory, C′. S represents the
location of the SAS system following the circular trajectory C. The full view area is highlighted in blue.

Note that the relationship between θ and θ′ is not linear. A direct consequence is that the integration
along C is not uniform for O’. Thus, the PSF is not uniform within the full view area, as we will see in
section 4. In10 we propose a sampling scheme to make uniform the PSF. The integration for the point O’
can be done by integrating along C′ instead of C by putting

θ′n = n
δθ

(1− α)R
(3)

into Eq. (2). The summation is then done on the subset {θn}n, where θn = NN(h−1(θ′n)), where NN(.)
represents the Nearest Neighbour operator. The integration will then be uniformly sampled, at regular
interval δθ, along C′. This method has one drawback however: the non-uniform downsampling of the angle
of integration θ slightly decreases the SNR (Signal-to-Noise Ratio) as the resampling gets away from the
centre O.

This inconvenience can be easily corrected by modifying the summation scheme. Assuming a point
scatterer in O’, the response of O’ after CSAS processing is described mathematically by:

I(O′) =

∫
C
sτMF(t)dτ, (4)

where sτMF(t) is the matched filter echo received at the slow time τ . Note that the slow time is linked linearly
to the position θ of the system along C. In practice, the acquisition is discrete and (4) rewrites as

I(O′) =
N∑
n=1

sθnMF(t). (5)

The resampling scheme suggested by (3) is then

I(O′) =

N ′∑
n=1

s
NN(h−1(θ′n))
MF (t). (6)
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The SNR diminishes because N ′ < N . To keep a constant SNR, we first divide the set of all the acquisition
angle {θn}n∈[1,N ] into the set of subsets

{θn}n∈[1,N ] =
{
{θkn′}k∈[1,Kn′ ]

}
n′∈[1,N ′]

, (7)

where θkn′ is such as NN(h(θkn′) = θ′n with θ′n given by (3). The integration (5) then can be computed as

I(O′) =
N ′∑
n′=1

1

Kn′

Kn′∑
k=1

s
θk
n′

MF(t). (8)

Because the summation in (8) is performed on all the original acquisitions {θn}n, the SNR is uniform for
all the full view area. The clustering of the θkn′ ensures the uniform angular sampling of Eq. (4) for every
points within the full field of view.

For the rest of the paper, we will be using the nomenclature described in Table 1 for the central frequency,
the bandwidth, the pulse length and the Gaussian window temporal length related to the pulse. For the
numerical simulations and unless otherwise specified, we will be using the values also indicated in Table 1.

Notations Definition Values Units

c sound speed 1500 m.s−1

f0 pulse centre frequency 100 kHz

∆f bandwidth 20 kHz

T pulse length 1 ms

σ Gaussian window temporal width 200 µs

Table 1: Nomenclature and nominal values.

3. THE MATCHED FILTER RESPONSE

In this section, we compute the matched filter response of a linear frequency modulated (LFM) signal
weighted by a rectangular window and a Gaussian window. The matched filter response solves the range
compression problem and plays an important role in the derivation of the PSF.

Let p(t) the pulse sending by the SAS system. We assume that p(t) is a weighted LFM signal. Thus, we
can write:

p(t) = W (t) exp

[
2iπ

(
f0 +

∆f

2T
t

)
t

]
, (9)

where W (t) is the windowing function. We are considering two cases for W (t), a rectangular window:

W (t) = 1[−T/2,T/2](t), (10)

and a Gaussian window:

W (t) = exp

(
− t2

2σ2

)
. (11)
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The matched filter response sMF(t) of the pulse (9) is given by:

pMF(t) =

∫ +∞

−∞
p∗(t′)p(t′ + t) dt′

= e2iπ(f0+ ∆f
2T
t)t
∫ +∞

−∞
W (t′)W (t′ + t) exp

[
2iπ

∆f

T
t′t

]
dt′ (12)

The exact analytic expression of the matched filter response (12) can be found for both windowing func-
tions (10) and (11) as described in11 and10 respectively, and pMF(t) reduces to

pMF(t) = B(t) e2iπf0t, (13)

with

B(t) = T sin[πt∆f(1−|t|/T )]
πt∆f for the rectangular windowing (10) and (14)

= σ
√
π exp

[
−
(

1
4σ2 + π2 ∆f2

T 2 σ
2
)
t2
]

for the Gaussian windowing (11). (15)

From (13), it is interesting to note that the matched filter response pMF(t) is only a low frequency enve-
lope, B(t), modulated by the central frequency f0. The frequency content of pMF(t) then comes from the
frequency leakage caused by the windowing function B(t).

4. THE PSF PROBLEM

The PSF plays a central role in the understanding of the resolution problem. It is in essence the founding
pillar of the image formation. In this section, we derive analytically the CSAS PSF at first for the central
point and then we extend the derivation to any offset point in the full view area.

A. CENTRE POINT PSF

To recover the CSAS PSF, we need to integrate the received echoes along the full circular trajectory
C. We consider an ideal scatterer located at the centre O of the circle C. Given the circular geometry of
the problem, it is convenient to compute the PSF is the polar coordinates where O represents the origin.
Furthermore, the PSF I(r, θ) is only function of r, the distance to the centre O, i.e. I(r, θ) = I(r). The
integration along C gives the PSF, and we can write

I(r) =

∫ 2π

θ=0
B

(
2r cos θ

c

)
e4iπf0r cos θ/c dθ. (16)

Using a first order approximation of the MacLaurin series for B(.) leads to the PSF expression for CSAS
configuration:

I(r) = 2πB

(
2r

c

)
J0(2kr) (17)

with k = 2πf0/c representing the wave number and J0(.) the Bessel function of the first kind of order 0.
In figure 2(a), we plot the PSF as a function of r and compare the exact solution (16) with the approx-

imation given by (17). The numerical simulation has been performed using the numerical value given in
Table 1. The close match between the two curves indicates that the first order approximation reflects accu-
rately the circular integration. Figure 2(b) draws the 2D normalised CSAS PSF for a pulse with a Gaussian
windowing.
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Figure 2: (a) Comparison between the full SAS integration from Eq. (16) and the approximation from
Eq. (17) for a pulse with a Gaussian windowing. (b) Normalised PSF for a CSAS system using a pulse
with a Gaussian window.

B. OFFSET POINT PSF

In section 4.1, we give the analytical expression of the CSAS response of the centre point. In this section,
we will compute the PSF for every point within the field of view given by the system. But to do so, we need
first to understand and then compute the CSAS PSF (17) in the Fourier domain.

The Fourier transform Î(ρ, φ) of the function I(r, θ) in polar coordinates is given by:

Î(ρ, φ) =

∫ +∞

r=0

∫ 2π

θ=0
I(r, θ)e2iπρr cos(θ−φ)r drdθ (18)

In our case, we already saw that, thanks to the circular symmetry, I(r, θ) reduces to I(r). Thus, Î(ρ, φ) =
Î(ρ) and (18) can be simplified as

Î(ρ) = 2π

∫ +∞

r=0
I(r)J0(2πrρ)r dr, (19)

where J0(.), as before, represents the Bessel function of the first kind of order 0. Using the expression (17)
for the Gaussian windowing case into (19) gives :

Î(ρ) = 8π5/2σa2
0

∫ +∞

r=0
exp(−r2)J0(2

√
2ka0r)J0(2

√
2πa0ρr)r dr, (20)

where a0 = 1√
2

cσT√
T 2+4π2∆f2σ4

and k is the wave number 2πf0

c . The analytical solution of (20) is given by

the generalisation of the Weber’s second exponential integral12 :

Î(ρ) = 4π5/2σa2
0I0(4πka2

0ρ) exp
[
−2a2

0(k2 + π2ρ2)
]
. (21)

where I0(.) is the modified Bessel function of the first kind. The physical interpretation of (21) is challeng-
ing. However, by using the fact that for most systems the quality factorQ > 2 which justifies the asymptotic
derivation of the Bessel function I0(.), (21) rewrites as10 :

Î(ρ) ≈ 2π3/2 σa0√
2kρ

exp
[
−2a2

0(πρ− k)2
]
. (22)
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Equation (22) further simplifies to:

Î(ρ) ≈
√

2π2σa0

k
exp

[
−2a2

0(πρ− k)2
]
, (23)

using the same constraint on the quality factor. Unlike (21), the interpretation of (22) is straightforward:
in the Fourier domain, the CSAS PSF is then a Gaussian ring with a diameter of 2f0/c and a variance of
1/π2a2

0. Figure 3 draws the normalised CSAS PSF at the centre of C in the Fourier domain.
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Figure 3: Normalised 2D Fourier transform for a perfect scattering point target located in the origin O.

Direct analytical derivation of (4) for the full view area is not feasible. To compute the CSAS PSF in every
points in the full view area, we will first made a plane wave hypothesis. Considering one ideal scatterer
located in O’(x0, y0) and under the plane wave assumption (4) rewrites in the Cartesian coordinates:

I(x, y) =

∫
C
B

(
2

(x− x0) cos θ′ − (y − y0) sin θ′

c

)
exp ik((x− x0) cos θ′ − (y − y0) sin θ′)dθ. (24)

Before developing further, we need to demonstrate the equivalence between (24) and (4). For the readability
of the equations, we will omit from now on the x0 and y0 dependency. Let

ψ(x, y, θ′) = B

(
2
x cos θ′ − y sin θ′

c

)
exp ik(x cos θ′ − y sin θ′) (25)

be the integrand of (24). Following the same method used to calculate Î(ρ) and after tedious calculations,
we find that the 2D Fourier transform of ψ(x, y, θ′) relative to (x, y) is:

ψ̂(ρ, φ, θ′) =
√

2πσa0 exp
[
−2a2

0(πρ− k)2
]
δ(φ+ θ′ + π/2). (26)

Note that the result is not surprising: the Dirac function δ(.) came from the exp(.) expression in (25) and the
Gaussian window from theB(.) term we already computed earlier. Of course, the choice in the notations was
not innocent: {ψ̂}θ′ is in essence a wavelet basis which reconstructs exactly the PSF (24). This demonstrates
that (24) is consistent with the original formulation (4). We can now operate a change of variable in (24) as
described below:

Î(ρ, φ) =

∫ +π

θ=−π
ψ̂(ρ, φ, θ′)dθ

=

∫ +π

θ′=−π
ψ̂(ρ, φ, θ′)

dh−1(θ′)

dθ′
dθ′ (27)
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where

dh−1(θ′)

dθ′
= g(θ′) =

sin θ′
√

1− α2 sin2 θ′ + α2 cos2 θ′ sin2 θ′√
1−α2 sin2 θ′

− 2α cos θ′ sin θ′√
1−

(
cos θ′

√
1− α2 sin2 θ′ + α sin2 θ′

)2
(28)

It is interesting to note that the first order of the MacLaurin series of (28) reduces to:

g(θ′) = 1− α cos θ′ +O(α2). (29)

Numerical simulations show that the first order approximation given by (29) is a great fit for α ≤ 1
2 . Finally,

by putting (26) into (27), we arrive to the CSAS PSF for an offset point in the Fourier domain:

Î(ρ, φ) = 2π3/2 σa0√
2kρ

exp
[
−2a2

0(πρ− k)2
]
g(φ+ θ0 + π/2) (30)

where θ0 is the angular coordinate of O’ in polar coordinates. Comparing the PSF for an offset point given
by (30) and the central point (22), we observe that the two expressions only differ by the angular weighting
factor g(φ+ θ0 + π/2). Figure 4(a) plots a 3D representation of the spectral CSAS PSF for an offset point
with the parameters α = 1√

2
and θ0 = 45◦ computed directly from Eq. (4). As expected, the PSF in the

Fourier domain is no longer symmetric and there is a strong angular dependency.
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Figure 4: (a) 3D plot of the normalised Fourier transform of an offset point. (b) Angular weighting
factor for simulated data and the one given by (30).

In figure 4(b), we compare the angular weighting coefficient between the simulated data plotted in fig-
ure 4(a) and the theoretical value g(.) from Eq. (28). We obtain a perfect match between the two curves
minus the noise from the simulation.

5. CONCLUSIONS

In this paper we derived an analytic expression for the point spread function relative to a fully coherent
CSAS for every points within the full field of view. Although a direct calculation is not trackable, we used
wavelet analysis to obtain the PSF expression. The PSF of an offset point differs from the PSF of the central
by an angular weighted factor analytically trackable. In future works, we aim to test our algorithm on real
CSAS data.
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