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Abstract—Person re-identification is to associate people across
different camera views at different locations and time. Current
computer vision algorithms on person re-identification mainly fo-
cus on performance, making it unsuitable for distributed systems.
For a distributed system, computational complexity, network
usage, energy consumption and memory requirement are as im-
portant as the performance. In this paper, we compare the merits
of current algorithms. We consider three key algorithms, Keep
It Simple and Straightforward MEtric (KISSME), Symmetry-
Driven Accumulation of Local Features (SDALF) and Unsu-
pervised Saliency Matching (USM). The advantage of SDALF,
and USM is that they are unsupervised methods so training
is not required but computationally many time expensive than
KISSME. The Saliency based method is superior in performance
but also has the largest feature size. As the features needs to be
transmitted from one camera to other in distributed system,this
mean higher energy consumption and longer time delay. Among
these three, KISSME offers a balance between performance,
complexity and feature lengths and hence more suitable for
distributed systems.

I. I NTRODUCTION

Person re-identification refers to associating people across
camera views at different locations and times [1]. It can have
huge impact on surveillance and security because manual
identification is not only tedious and costly but the results
may also be received too late. The main challenges it faces is
that the Field Of View (FOV) of the cameras can be non-
overlapping, background and pose can change, as well as
the occurrence of occlusion. A particular individual can look
dissimilar in different views, while different individuals can
look similar from different angles. Figure1 shows some sample
pedestrian images from the VIPeR dataset [2] taken by two
cameras illustrating these difficulties.
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Fig. 1. Samples of pedestrian images from VIPeR dataset [2]

Person re-identification algorithms can broadly be classi-
fied into supervised and unsupervised algorithms. Supervised
methods include algorithms like Mid-level features [3], Keep
It Simple and Straightforward MEtric (KISSME) [4], Locally
Aligned Featrue Transform (LAFT) [5], Information Theoretic
Metric Learning (ITML) [6]. They mostly focus on metric
learning, whereas unsupervised algorithms focus on feature

design. Some of the unsupervised methods include Symmetry-
Driven Accumulation of Local Features (SDALF) [7], Bio-
inspired Covariance based features (BiCov) [8] and spatio-
temporal [9]. For a more detailed review of recent approaches,
refer to these papers [1], [10], [11], [12].

Current research in this area, however, focusses on im-
plementing their algorithm on a single system [7], [4], [13],
[3]. Implementing person re-identification on a distributed
system has numerous benefits which will be illustrated with
the example shown in Fig. 2. The system comprises of multiple
smart cameras which may be static or moving. They are shown
in the Fig. 2 by black and white camera icons respectively.
The cameras are connected to each other and their field of
view may be non-overlapping. The targets 1 and 2 are moving
along the path shown by the arrows.

In a centralised system, all the sensor nodes would have
been connected to a single computer with immediate access
to data from all the sensor nodes. But on the downside,
it has to process the data itself, which may be challenging
particularly in real-time applications. In the distributed case,
each sensor node has access to its own data only but offers
more flexibility for signal processing. Running it on wireless
embedded platform such as smartphone could be possible,
which means the cameras could be deployed and scaled easily.
In a military context, this means the camera may be embedded
within a soldier’s uniform to monitor targets without raising
suspicion in conflict zones. We can think of light cameras in
Fig.2 as these soldiers monitoring target 2. however, alongwith
the algorithm’s accuracy, there are several other factors to think
about such as feature data length, computational complexity
etc.

In this paper, we discuss the advantages and the disad-
vantages of current person re-identification algorithms when
implemented on a distributed platform. The paper is structured
as follows. Section II describes the basic workflow in person
re-identification. Then we analyse various algorithms in section
III. Section IV describes the experiments carried out and their
results. Finally section V discusses the results and concludes
the paper.
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Fig. 2. Scenario of multi-camera person re-identification.Shaded cameras
are fixed, white cameras are moving and grayed area representField of View
(FOV)



II. SYSTEM DESCRIPTION

Person re-identification algorithms generally follow the
basic workflow depicted in Fig. 3. Images are taken from each
camera and preprocessed. The pre-processing step may include
background subtraction and a person detection algorithm. To
create a unique signature of each person, features are extracted.
Popular features include combination of low level features
such as colour histograms, Local Binary Patterns (LBP) [14],
Scale Invariant Feature Transform (SIFT) [15] and Histogram
of Gradient(HOG) [16]. Metric distance between signaturesis
calculated to verify if the images belong to the same individual
or not. Alternatively, the test signature may be compared with
the gallery set containing signatures of a seen individual to find
the correct match. Some researchers have defined the person
identification problem as a ranking problem [17].

In the distributed case, the signature has to be communi-
cated from one camera to another as shown in the Fig. 3. Very
often, these camera are connected with wireless networks such
as Wi-Fi or cellular system. We know that the time taken and
energy required to send the data across the network is directly
proportional to the length of the data [18]. We conduct an
experiment to quantize the energy and time required for such
system in section IV-A.
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Fig. 3. Person Re-identification workflow.

Depending upon the number of images used, algorithms
can be classified into single-shot and multi-shot algorithms.
Single-shot algorithms take into account only one image per
person (class) whereas multiple-shot algorithms uses multiple
images. Multi-shot algorithms tries to keep the signature data
size low and keep the matching considerably fast by throwing
away redundant information.

A. Distributed Scenario

For implementing the re-identification system on a dis-
tributed system, let us assume each camera in Fig.3 has its
own processing capability. So each sensor node can generate
signature for the people in its FOV. For signature matching,
one device has to send their signature to its neighbour so that it
can be matched with its camera views. These are often battery
powered devices, such as a smartphone, so longevity of the
battery is desired. As it is desirable to keep the signature size
as small as possible, we analyse the size of descriptors of the
algorithms in consideration. Distributed systems are equipped
with less powerful processors and have less memory resources,
so the complexity of the algorithm is desired to be as low as
possible. In order to measure complexity, we measure the time
taken to run. For this paper, we have run our experiments on
a desktop computer.

B. Datasets

Popular publicly available datasets for person re-
identification are listed in Table.I. VIPeR is the most widely
used and challenging dataset, one of the reason being limited
samples per subject. We have used the VIPeR dataset in our

experiments because many published algorithm comparisons
are available.

III. PERSONRE-IDENTIFICATION ALGORITHMS

Among many algorithms, we have selected three key ones
owing to their significance in person re-identification and
availability of their source code. We go through them very
briefly here.

A. KISS MEtric Learning

Keep It Simple and Straightforward Metric (KISSME)
[4] focusses on learning the metric rather than complicated
descriptor design. For the descriptor, images are divided into
overlapping blocks and histograms are extracted in HSV and
LAB colour-space. Local Binary Patterns (LBP) [14] are
extracted to capture the texture information. For the VIPeR
dataset, based on the code and data1 provided by authors [4],
each image has 22154 dimension features. Principal Com-
ponent Analysis (PCA) is used by the authors to shorten
the length of the descriptor to 34 experimentally chosen
dimensions.

The Mahalanobis Metric learning is a widely used method
in classification and in computer vision. It is defined as the
squared distance between two pointsxi andxj as

d2
M (xi, xj) = (xi − xT

j )M(xi − xj) (1)

where M � 0 is a positive semi-definite matrix.The main
approach of Mahalanobis based algorithms is to define and
learn the matrixM such that distance between images of
same class is minimised and distance between images of
different classes are maximised. KISSME [4], ITML, [6],
LDML [21] and LAFT [5] are based on these methods. A
detailed review of Mahalanobis based methods can be found
in Roth et al’s paper [22]. KISSME tries to address the metric
learning approach from a statistical inference point of view.
They test the hypothesisH0 that the pair is dissimilar versus
the alternative hypothesisH1 that the pair is similar.

δ(xij) = log

(

p(xij |H0)

p(xij |H1)

)

= log
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(2)

wherexij = xi−xj is the pairwise difference with zero mean.
A high value ofδ(xij) means the pair are dissimilar and vice-
versa. Assuming a Gaussian structure of the difference space,
Eq. 2 can be written as
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where,

Σyij=0,1
=

∑

yij=0,1

(xi − xj)(xi − xj)
T (4)

They arrive at the Mahalanobis distance metric in Eqn.1 that
reflects the properties of the log-likelihood ratio test by re-
projectingM̂ =

(

Σ−1
yij=1 − Σ−1

yij=0

)

onto the cone of positive
semi-definite matrices.

1accessible from https://lrs.icg.tugraz.at/research/kissme/



TABLE I. POPULAR PERSONRE-IDENTIFICATION DATASETS

Dataset No. of Person No. of Images Features
VIPeR [2] 632 1264 pose, background, only 1 image per subject per camera

CAVIAR4REID [19] 72 1220 pose, background, varying resolution, multiple images persubject per camera
CUHK01 [20] 971 3884 pose, background, multiple images per subject per camera

B. Symmetry-Driven Accumulation of Local Features(SDALF)

SDALF [7] is suitable for single-shot and multi-shot im-
ages. The pedestrian image is divided into the head, torso
and leg region and three types of features Weighted Color
Histograms(WHSV), Maximally Stable Color Region(MSCR)
and Recurrent High-Structured Patches (RHSP) are extracted.
Each of these features are extracted from the torso and leg
region and optionally from the head region. The histograms
feature is built with 12 bins channel per region, totalling to
12 × 3 × 3 = 108 dimensions2. The MSCR feature of a
blob is represented by 9 dimensional feature but these blobs
per image is variable. Similarly, the feature length of RHSP
features is variable as well. Similarity between two imagesis
calculated as weighted sum of euclidean distance between their
features. As the algorithm is unsupervised, it doesn’t require
any training and is also scalable to videos.

C. Unsupervised Saliency

Saliencyis defined as “distinct features that 1) arediscrimi-
nativein making a person standing out from their companions,
and 2) arereliable in finding the same person across different
views” [23]. Zhao et al. have developed a few variants of
supervised and unsupervised methods using saliency [13],
[23], [3] but we will mostly focus on Unsupervised Salience
Matching [13]. Each image is densely divided into overlapping
patches. For each patch, 32 bin LAB colour histograms are
computed in three scales for three channels. So the colour
feature is of length32 × 3 × 3 = 288. Similarly for SIFT
features, each patch is further divided into4×4 cells to obtain
4 × 4 × 8 = 128 dimensional feature per channel. So total
feature length for each patch is288 + 128 × 3 = 672 dimen-
sions. For an image, these DenseFeats features is represented
as XA,u = {xA,u

m,n|m = 1..., M, n = 1..., N} where (A, u)
denotes theuth image in camera A,(m, n) denotes the patch
centred at themth row and thenth column of the image. Total
size of feature for an image isM × N × 672.

Once, the features are extracted for each patch, the key
steps of the algorithm is briefly listed in Table II. Fig.4
illustrates the adjacency constrained search set of the patch in
yellow box which is used in computing the Nearest Neighbour
set. One of the two approaches is based nearest neighbour
distances. A score is assigned for each patch using Eq. 5.

scoreknn(xA,u
m,n) = Dk(XNN (xA,u

m,n)) (5)

whereDk denotes the distance of thek-th nearest neighbour.
Similarity between two images is calculated using Eq.6

Sim(xA,u,xB,v) =

∑

m,n

scoreknn(xA,u
m,n).s(xA,u

m,n, xB,v
i,j ).scoreknn(xB,v

i,j )

αsdc + |scoreknn(xA,u
m,n) − scoreknn(xB,v

i,j )|
(6)

IV. SIMULATION RESULTS

In the ideal scenario, the algorithms would be implemented
on a real distributed system such as Android smartphone

2reduced to 72 if head region is not used

Fig. 4. Illustration of adjacency constrained search. Green region represents
the adjacency constrained search set of the patch in yellow box. The patch in
red box is the target match [23]

TABLE II. A LGORITHM FOR UNSUPERVISEDHUMAN SALIENCY
LEARNING

Algorithm for learning Unsupervised Human saliency
Input: imageXA,u and a reference image set
R = {XB,v, v = 1, ...Nr}

Output: saliency probability mapP (lA,u
m,n = 1|xA,u

m,n)

for each patchxA,u
m,n do

compute Nearest Neighbour (NN) setXNN (xA,u
m,n)

computescoreknn(xA,u
m,n) based on NN distances,

end for

and results could be measured. However, the algorithms are
initially written in MATLAB to simulate a distributed system
scenario and the simulations were carried out on MATLAB
running on a desktop PC. In future, we can experiment with
implementing the algorithms on embedded device to check
their performance.

Experiments were carried out on a desktop PC with an
Intel Xeon processor (X5650) with 12 cores and 24 gigabytes
of RAM running Scientific Linux 6.5 unless specified. Some
of the algorithms have parallel implementation as well but we
have turned it off for these experiments for two reasons. 1) To
make the comparisons fair, 2) Parallel MATLAB instances run
within their own Java Virtual Machine (JVM) environments
accounting for increased memory allocations. This caused
some algorithms to fill the RAM to fill quickly and slowing
down the execution.

For the experiments, the VIPeR dataset was randomly split
into two sets of 316 image pairs each. One set was used for
training and other for testing. We do this following the testing
conventions in these papers [7], [4], [13].

A. Cost of sending data in wireless network

In the distributed case, the signature of a person extracted
in one camera has to be transmitted to another via a commu-
nication channel as shown in Fig. 3. The implication of trans-
ferring data to a neighbour node has a cost in terms of energy
and time, particularly in the case of wireless transmission. We
conducted simple experiment to analyse how much energy and
time is required in order to data to other nodes. We developeda
simple application(app) for the Android platform which sends
files of various sizes to the server using WiFi or mobile
data (see Fig.5). The application was built using Google’s
Android Development Kit (ADK) and Android Studio. The
experiments were conducted in a LG G2 smartphone. Time is
measured using the system clock. Initial time is noted when
data sending commences. The final time is noted after an ac-
knowledgement is received from the server and the time taken



Fig. 5. Android application for calculating time and energycost of
transmitting data

is the difference of these two. Measuring energy consumed is
however complicated than measuring time, because by default
Android reports battery level in percentage only.It is too crude
for our purpose and also as many processes are running
simultaneously in background, it’s hard to calculate the exact
energy consumed for the communication. We used a third
party application called Trepn profiler [24]. It is developed
by Qualcomm for their Snapdragon processors and has access
to hardware counters in the processor which are not available
for public use. It isolates the energy used by an application,
by collecting baseline energy consumption before startingthe
test application. Similar to the counter for measuring time, we
flag the start and the end of the communication event to the
Trepn application using Android Intent. Trepn then logs the
energy consumption for each event.

As expected, the evaluations show in Fig.6 that the cost
rises as the size of data goes up. WiFi has generally lower
energy consumption than the phone networks. The difference
becomes notable as the size of data goes up. Surprisingly, the
speed of 4G was even faster than the WiFi albeit at higher
energy cost. The test were done in Edinburgh with the WiFi
provided by router connected to the Virgin Network and 4G
by Everything Everywhere (EE) Network. But we didn’t take
into account many factors such as the load on the network,
Signal strength etc.
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Fig. 6. Time and energy required to send data across the network

B. Runtime and Feature Length

1) KISSME: Among all the methods, KISSME was the
fastest to train and learn the metric and it performed well
too. The length of the feature before and after dimensionality
reduction was determined from the source code and feature
dataset provided. However, to calculate the time taken for
feature extraction, we wrote the code as per their paper [4].
We divide the image into overlapping blocks of size8×16 and
stride of8 × 8 to get105 patches. We took histograms of 24
bins per channel and uniform LBP of 59 bins. So in total, the
feature size is105×3×2×24+105×59 = 21315 dimensions.
The histogram extraction of HSV and LAB and LBP features

TABLE III. SDALF E XECUTION TIME

Step Time(sec)
Division into 3 parts 162.15
MSCR Extraction 138.21
WHSV Extraction 123.17
RHSP Extraction 4824.6
MSCR Matching 6095.3
WHSV Matching 214.74
RHSP Matching 423.00
Total 11981.17

TABLE IV. F EATURE LENGTH, RUNTIME AND RANK 1 RESULTS.

Algorithm Feature Length(PCA) Time(sec) Rank 1
KISSME 22154(34) 260.05 18.03
SDALF 5359 11981.00 19.80

Unsupervised Saliency 201600 11737.90 27.22

took approximately 260 seconds, which is very high compared
to its training time of around 0.05 seconds. But still, feature
extraction per image would take about260/1264 ≈ 0.2
seconds.After dimensionality reduction, the feature dimension
is reduced to just 34 which is highly desirable.

2) SDALF: As discussed in section III, the feature length
of SDALF is not fixed but dependent on the number of RHSP
patches and MSCR regions found in the image. Table III shows
the breakdown of average time spent per step for the VIPeR
dataset. RHSP features took the longest to compute so we
experimented with removing it. The result showed there was
only marginal degradation of performance. It can be seen in
Fig. 7. But as the test has been done only in one dataset, it
may not be true for all.
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Fig. 7. Performance of SDALF with and without RHSP

3) Saliency:Saliency learning has the highest feature size
per image. Each feature is of 201600 dimensions, if we
suppose it is of MATLAB double precision, it’s size is approxi-
mately1.5 Megabytes which is not huge. However, each probe
patch has it own adjacency search area for each image in the
gallery set. If we assume10 patches per row and constrained
search area to be±2 rows, and there are 100 images in the
gallery then. For each patch, we need to calculate the distance
between itself and10 × 5 = 5000 patches3. If there are300
patches per image, it amounts to5000 × 300 = 1, 500, 000
distances per image, which is more than 11 Megabytes in
MATLAB double precision. In terms of running on embedded
devices, memory is often a limited resource.

C. Cumulative Matching Characteristics (CMC) curves

Cumulative Matching Characteristics(CMC) [25] is widely
used in person re-identification performance evaluation. It
treats person re-identification as a ranking problem. Rank-1

3except for two top and two bottom rows



implies that the correct match has been found whereas Rank-
k implies there werek− 1 wrong classes ahead of the correct
class. CMC(k) measures the probability that the correct match
has a rank equal or higher thank [10]. TableIV shows Rank-
1 score of various algorithms. It shows Saliency has better
performance although it is computationally expensive and high
data size. KISSME on the other hand looks the best to be
implemented on distributed system as it is shown to be fast
and computationally inexpensive as well.
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Fig. 8. Performance of the algorithms in VIPeR dataset

V. CONCLUSION

In this paper, we explored the possibilities of implementing
person re-identification algorithms on distributed systems. We
studied KISSME, SDALF and Unsupervised Saliency match-
ing in terms of their runtime, size of descriptor, along with
their person re-identification performance. We also lookedat
time and energy cost of communicating with neighbouring
systems using various wireless technologies. Unsupervised
Saliency has better Rank-1 result but it is computationally
the most expensive and the memory requirement is also the
highest. Even though we did not mention the energy cost
for computing on the distributed platform, this would also
consume high amount of energy. SDALF on the other hand
has smallest signature before dimensionality reduction and
potentially could be made even smaller by removing RHSP
features. In theory at least, SDALF and Saliency features may
be reduced using dimensionality reduction as well. But based
on our experiments, without any modifications, KISSME is
the best algorithm for a distributed system owing to its low
complexity and shortest signature length. The only drawback
is that it has to be trained and the large covariance matrices
has to be computed and communicated to the neighbours.

This paper explored only the consequences of using dis-
tributed systems for person re-identification systems where
communication between the sensor nodes is a requirement.
But in some cases there might be a question between commu-
nicating or processing on its own. Even with communicating
between nodes, there is a question of which node to commu-
nicate to when multiple nodes are available. In future, we are
interested in answering these questions.
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