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Abstract—Person re-identification is to associate people across design. Some of the unsupervised methods include Symmetry-
different camera views at different locations and time. Curent

computer vision algorithms on person re-identification manly fo-
cus on performance, making it unsuitable for distributed systems.
For a distributed system, computational complexity, netweok
usage, energy consumption and memory requirement are as im-
portant as the performance. In this paper, we compare the mets
of current algorithms. We consider three key algorithms, Keep
It Simple and Straightforward MEtric (KISSME), Symmetry-
Driven Accumulation of Local Features (SDALF) and Unsu-
pervised Saliency Matching (USM). The advantage of SDALF,
and USM is that they are unsupervised methods so training
is not required but computationally many time expensive tha
KISSME. The Saliency based method is superior in performane
but also has the largest feature size. As the features needs be
transmitted from one camera to other in distributed system,this
mean higher energy consumption and longer time delay. Among
these three, KISSME offers a balance between performance,
complexity and feature lengths and hence more suitable for
distributed systems.

I. INTRODUCTION

Person re-identification refers to associating peoplesacro
camera views at different locations and times [1]. It canehav
huge impact on surveillance and security because manug
identification is not only tedious and costly but the resultswhi
may also be received too late. The main challenges it faces 15
that the Field Of View (FOV) of the cameras can be non-
overlapping, background and pose can change, as well

the occurrence of occlusion. A particular individual canKo
dissimilar in different views, while different individuslcan

look similar from different angles. Figuel shows some demp
pedestrian images from the VIPeR datasét [2] taken by twe,

cameras illustrating these difficulties.

Camera:l

Camera:2

Fig. 1. Samples of pedestrian images from VIPeR data$et [2]

Person re-identification algorithms can broadly be classi-
fied into supervised and unsupervised algorithms. Supsdvis

methods include algorithms like Mid-level featurés$ [3],efe
It Simple and Straightforward MEtric (KISSME}I[4], Locally
Aligned Featrue Transform (LAFTQL]5], Information Thedret
Metric Learning (ITML) [6]. They mostly focus on metric

learning, whereas unsupervised algorithms focus on featu

Driven Accumulation of Local Features (SDALH)I [7], Bio-
inspired Covariance based features (BiCdv) [8] and spatio-
temporal [9]. For a more detailed review of recent approsche
refer to these papers![1]. 110],111].112].

Current research in this area, however, focusses on im-
plementing their algorithm on a single systenh [T], [4]1[13]
[B]. Implementing person re-identification on a distrilgite
system has numerous benefits which will be illustrated with
the example shown in Fifll 2. The system comprises of multiple
smart cameras which may be static or moving. They are shown
in the Fig.[2 by black and white camera icons respectively.
The cameras are connected to each other and their field of
view may be non-overlapping. The targets 1 and 2 are moving
along the path shown by the arrows.

In a centralised system, all the sensor nodes would have
been connected to a single computer with immediate access
to data from all the sensor nodes. But on the downside,
it has to process the data itself, which may be challenging
particularly in real-time applications. In the distribdtease,
each sensor node has access to its own data only but offers
ore flexibility for signal processing. Running it on wirste
bedded platform such as smartphone could be possible,
ch means the cameras could be deployed and scaled easily.
a military context, this means the camera may be embedded
within a soldier’s uniform to monitor targets without raigi

%spicion in conflict zones. We can think of light cameras in

Fig[@ as these soldiers monitoring target 2. however, aldtiy
the algorithm'’s accuracy, there are several other factottsink
about such as feature data length, computational complexit
tc.

In this paper, we discuss the advantages and the disad-
vantages of current person re-identification algorithmsnvh
implemented on a distributed platform. The paper is stmactu
as follows. Sectiofidl describes the basic workflow in person
re-identification. Then we analyse various algorithms tisa
[ Section[IM describes the experiments carried out argirth
results. Finally sectioflV discusses the results and cdeslu
the paper.

Fig. 2. Scenario of multi-camera person re-identificatiShaded cameras
are fixed, white cameras are moving and grayed area repremsdtof View

(FOV)



I[I. SYSTEM DESCRIPTION experiments because many published algorithm comparisons

Person re-identification algorithms generally follow the are available.

basic workflow depicted in Fi]l 3. Images are taken from each

camera and preprocgssed. The pre-processin_g step mf_iyeinclu 1. PERSONRE-IDENTIEICATION ALGORITHMS
background subtraction and a person detection algoritom. T
create a unique signature of each person, features aretextra Among many algorithms, we have selected three key ones

Popular features include combination of low level featuresowing to their significance in person re-identification and
such as colour histograms, Local Binary Patterns (LBP),[14]availability of their source code. We go through them very
Scale Invariant Feature Transform (SIFT)I[15] and Histogra briefly here.

of Gradient(HOG)I[1B]. Metric distance between signatuses

calculated to verify if the images belong to the same indiwid

or not. Alternatively, the test signature may be compareati wi A. KISS MEtric Learning

the gallery set containing signatures of a seen individufihd Keep It Simple and Straightforward Metric (KISSME)

}ggn?ii‘)i::rgt?ér:n a:ggl'e?no?Searizﬁi{r?herrsogﬁavg Eile%f]ined the pers[r,le focusses on learning the metric rather than complicated
P gp ’ descriptor design. For the descriptor, images are dividéal i

In the distributed case, the signature has to be communbverlapping blocks and histograms are extracted in HSV and
cated from one camera to another as shown in the[FFig. 3. VelyAB colour-space. Local Binary Patterns (LBP)_[14] are
often, these camera are connected with wireless netwodks suextracted to capture the texture information. For the VIPeR
as Wi-Fi or cellular system. We know that the time taken anddataset, based on the code andliat@vided by authord 4],
energy required to send the data across the network is lgirecteach image has 22154 dimension features. Principal Com-
proportional to the length of the data_[18]. We conduct anponent Analysis (PCA) is used by the authors to shorten
experiment to quantize the energy and time required for sucthe length of the descriptor to 34 experimentally chosen
system in sectiof TV=A. dimensions.

The Mahalanobis Metric learning is a widely used method

PeonDeecion || e ermcion | ] < in classification and in computer vision. It is defined as the
Camera 1 squared distance between two poimisandz; as
-W ‘Person Detection _,lreame 7 H ig
diy (@i, @) = (2 — ] )M (2 — ;) 1)
Different person where M > 0 is a positive semi-definite matrix.The main
approach of Mahalanobis based algorithms is to define and
Fig. 3. Person Re-identification workflow. learn the matrixM such that distance between images of

same class is minimised and distance between images of
Depending upon the number of images used, algorithmaifferent classes are maximised. KISSME [4], ITML] [6],
can be classified into single-shot and multi-shot algorthm LDML [21] and LAFT [5] are based on these methods. A
Single-shot algorithms take into account only one image pedetailed review of Mahalanobis based methods can be found
person (class) whereas multiple-shot algorithms usesipteult in Roth et al's papei [22]. KISSME tries to address the metric
images. Multi-shot algorithms tries to keep the signatuatad learning approach from a statistical inference point ofwie
size low and keep the matching considerably fast by throwing'hey test the hypothesiH, that the pair is dissimilar versus

away redundant information. the alternative hypothesi; that the pair is similar.
A. Distributed Scenario P(Xij|H0)) (f(xij|9()))
d(x;;) = log <7 =log | ——= 2
(xi5) p(xij|Hy) 5\ F(xiy100) @)

For implementing the re-identification system on a dis-

tributed system, let us assume each camera ifilFig.3 has herex,; = x; —x; is the pairwise difference with zero mean.
own processing capability. So each sensor node can genergigyigh value ofs(x;,;) means the pair are dissimilar and vice-

signature for the people in its FOV. For signature matchingyersa. Assuming a Gaussian structure of the differenceespac
one device has to send their signature to its neighbour $dttha Eq.[2 can be written as

can be matched with its camera views. These are often battery

powered devices, such as a smartphone, so longevity of the 1 exp(—1/2xTy 1 x;;
battery is desired. As it is desirable to keep the signatizes s (xi;) = log V/ 275y, =0| (7172, vis =0 i) 3)
as small as possible, we analyse the size of descriptorsof th " ﬁ exp(=1/2xF %0 xij)

T yij=1 ij =

algorithms in consideration. Distributed systems are gugd

with less powerful processors and have less memory resaurce, hare
so the complexity of the algorithm is desired to be as low as '
possible. In order to measure complexity, we measure the tim _ e N v A\T 4
taken to run. For this paper, we have run our experiments on Yij=0.1 Z(:) 1(Xl x;)(xi — x;) (4)
a desktop computer. Y=t

They arrive at the Mahalanobis distance metric in Eqn.1 that

B. Datasets reflects the properties of the log-likelihood ratio test ley r

Popular publicly available datasets for person re-projectingM = (E;.;:l - E;.;:o) onto the cone of positive

identification are listed in Tablg.l. VIPeR is the most widel semi-definite matrices.
used and challenging dataset, one of the reason beingdimite
samples per subject. We have used the VIPeR dataset in ouftaccessible from https:/Irs.icg.tugraz.at/researsbtkie/




TABLE I. POPULAR PERSONRE-IDENTIFICATION DATASETS

Dataset No. of Person | No. of Images Features
VIPeR (2] 632 1264 pose, background, only 1 image per subject per camera
CAVIAR4REID [19] 72 1220 pose, background, varying resolution, multiple imagessusject per camerg
CUHKO1 [20] 971 3884 pose, background, multiple images per subject per camera

B. Symmetry-Driven Accumulation of Local Features(SDALF)

SDALF [[7] is suitable for single-shot and multi-shot im-
ages. The pedestrian image is divided into the head, torso
and leg region and three types of features Weighted Color
Histograms(WHSV), Maximally Stable Color Region(MSCR)
and Recurrent High-Structured Patches (RHSP) are exttacte
Each of these features are extracted from the torso and leg
region and optionally from the head region. The histogramsig. 4. lllustration of adjacency constrained search. Gregion represents
feature is built with 12 bins channel per region, totalling t the adjacency constrained search set of the patch in yeltow The patch in
12 x 3 x 3 = 108 dimensior8. The MSCR feature of a 4 Pox s the target match [23]
blob is represented by 9 dimensional feature but these blobs tag £ 1. A LcoRrITHM FORUNSUPERVISEDHUMAN SALIENCY
per image is variable. Similarly, the feature length of RHSP LEARNING
features is Variable as well. Simila_rity between wo ima'g;es Algorithm for learning Unsupervised Human saliency
calculated as weighted sum of euclidean distance betweén th Input._image X and a reference image set
features. As the algorithm is unsupervised, it doesn't irequ R={XB" v=1,..N,}
any training and is also scalable to videos. Output: saliency probability magP(i7, % = 1|z/%)

for each patchzA:“ do

m,n
compute Nearest Neighbour (NN) SmNN(J};?I’,Z)
computescoreknn(xﬁ;,‘;) based on NN distances,

end for

C. Unsupervised Saliency

Saliencyis defined as “distinct features that 1) atiscrimi-
nativein making a person standing out from their companions,

and 2) argeliable in finding the same person across d|ﬁerentand results could be measured. However, the algorithms are

VIEWS .[23]' Zhao et al. have developed a few variants of; itially written in MATLAB to simulate a distributed syste
supervised and unsupervised methods using saliendy [13;[]Cenario and the simulations were carried out on MATLAB
[23], [3] but we will mostly focus on Unsupervised Salience

Matching [13]. Each image is densely divided into overlagpi running on a desktop PC. In future, we can experiment with
el : ; implementing the algorithms on embedded device to check
patches. For each patch, 32 bin LAB colour histograms argheir performance
computed in three scales for three channels. So the colour P '
feature is of length32 x 3 x 3 = 288. Similarly for SIFT Experiments were carried out on a desktop PC with an
features, each patch is further divided idta 4 cells to obtain  Intel Xeon processor (X5650) with 12 cores and 24 gigabytes
4 x 4 x 8 = 128 dimensional feature per channel. So totalof RAM running Scientific Linux 6.5 unless specified. Some
feature length for each patch 288 + 128 x 3 = 672 dimen-  of the algorithms have parallel implementation as well bat w
sions. For an image, these DenseFeats features is remesenhave turned it off for these experiments for two reasons.al) T
as X4 = {am%m = 1..,M,n = 1..,N} where (4,u)  make the comparisons fair, 2) Parallel MATLAB instances run
denotes the:'" image in camera A(m,n) denotes the patch within their own Java Virtual Machine (JVM) environments
centred at then'” row and then!” column of the image. Total accounting for increased memory allocations. This caused
size of feature for an image &/ x N x 672. some algorithms to fill the RAM to fill quickly and slowing

down the execution.
Once, the features are extracted for each patch, the key

steps of the algorithm is briefly listed in Tablg Il. .4 For the experiments, the VIPeR dataset was randomly split
illustrates the adjacency constrained search set of tlehpat  into two sets of 316 image pairs each. One set was used for
yellow box which is used in computing the Nearest Neighboutraining and other for testing. We do this following the tegt

set. One of the two approaches is based nearest neighbatonventions in these papefs [7]] [4].[13].

distances. A score is assigned for each patch usin@lEq. 5.

SCOT€ppy (T4 ) = Dip( Xy (z/h%)) (5) A. Cost of sending data in wireless network
where D;, denotes the distance of titeth nearest neighbour.  In the distributed case, the signature of a person extracted
Similarity between two images is calculated usinglEq.6 in one camera has to be transmitted to another via a commu-

nication channel as shown in FIg. 3. The implication of trans
ferring data to a neighbour node has a cost in terms of energy
Sim(x*%, xP) = and time, particularly in the case of wireless transmissia
Au Aw B B conducted simple experiment to analyse how much energy and
Z SCOTCLnn (L7 )-8 (47075, L5 -SCOTCknn (2;57)  (B)  time is required in order to data to other nodes. We develaped
Qsde + |scorekm(zﬁ4j;l) — scoreg,, (xf]z”)| simple application(app) for the Android platform which den
' files of various sizes to the server using WiFi or mobile
data (see Fifgl5). The application was built using Google’s
IV." SIMULATION RESULTS Android Development Kit (ADK) and Android Studio. The
In the ideal scenario, the algorithms would be implemente@xperiments were conducted in a LG G2 smartphone. Time is

on a real distributed system such as Android smartphongleasured using the system clock. Initial time is noted when
data sending commences. The final time is noted after an ac-

2reduced to 72 if head region is not used knowledgement is received from the server and the time taken

m,n




®MEO NUE M ls0% 2 23:01 TABLE IIl. SDALF EXECUTION TIME

® UploadToServer Step Time(sec)
i Division into 3 parts 162.15
) Use Wifi MSCR Extraction 138.21
@® Use Data WHSV Extraction 123.17
O Use Bluetooth RHSP Extract_ion 4824.6
MSCR Matching 6095.3
Click To Upload File WHSV Matching 214.74
Wifi Selected. Trying to Disable Data and Enable Wifi RHSP Matching 423.00
Wifi is already selected disabling d:
Dis\ag‘eadreDaa‘iseec(e now disabling data Total 11981.17
Data Selected. Trying to enable Data and disable Wifi
Er!ab\ed Data
P el TABLE IV. FEATURE LENGTH, RUNTIME AND RANK 1 RESULTS
Fig. 5.  Android application for calculating time and energpst of Ali?‘s)gt’ug Feature Leng;q(;(fﬁ) T'm;égegé Ralr;kols
transmitting data SDALF 5359 | 11981.00| 19.80
Unsupervised Salienc 201600 11737.90 27.22

is the difference of these two. Measuring energy consumed is

however complicated than measuring time, because by defaubok approximately 260 seconds, which is very high compared
Android reports battery level in percentage only.Itis toode  to its training time of around 0.05 seconds. But still, featu
for our purpose and also as many processes are runningtraction per image would take abo@60/1264 ~ 0.2

simultaneously in background, it's hard to calculate thactX seconds.After dimensionality reduction, the feature disien
energy consumed for the communication. We used a thirgs reduced to just 34 which is highly desirable.

party application called Trepn profiler_[24]. It is develdpe

by Qualcomm for their Snapdragon processors and has access 2) SDALF: As discussed in sectidll, the feature length
to hardware counters in the processor which are not availabf SDALF is not fixed but dependent on the number of RHSP
for public use. It isolates the energy used by an applicationPatches and MSCR regions found in the image. Talle |1l shows
by collecting baseline energy consumption before stattfiey the breakdown of average time spent per step for the VIPeR
test application. Similar to the counter for measuring time  dataset. RHSP features took the longest to compute so we
flag the start and the end of the communication event to théxperimented with removing it. The result showed there was
Trepn application using Android Intent. Trepn then logs theonly marginal degradation of performance. It can be seen in
energy consumption for each event. Fig.[d. But as the test has been done only in one dataset, it

] ) may not be true for all.
As expected, the evaluations show in Hig.6 that the cost

rises as the size of data goes up. WiFi has generally lower Cumulative Matching Characteristic (CMC)
energy consumption than the phone networks. The difference %
becomes notable as the size of data goes up. Surprisingly, th J
speed of 4G was even faster than the WiFi albeit at higher 60
energy cost. The test were done in Edinburgh with the WiFi %

provided by router connected to the Virgin Network and 4G
by Everything Everywhere (EE) Network. But we didn’t take

Percentage

into account many factors such as the load on the network, 2
Signal strength etc. %
0 —+— Original SDALF
5 —O— SDALFwithoutRHSP
Time taken to transmit data Energy cost of transmitting data 0
i“ o WiFi 7§ p— 12345678910 12 16 20
T [ Rank
2 3G 65 3¢
20 6
218 o Fig. 7. Performance of SDALF with and without RHSP
I 25
214 g 4
512 335
B 2. 3) Saliency: Saliency learning has the highest feature size
‘ 1 per image. Each feature is of 201600 dimensions, if we
> o i suppose it is of MATLAB double precision, it's size is appirox
KIEEERENT! PRI KRN A mately1.5 Megabytes which is not huge. However, each probe
patch has it own adjacency search area for each image in the
Fig. 6. Time and energy required to send data across the retwo gallery set. If we assumg0 patches per row and constrained

search area to be&-2 rows, and there are 100 images in the
gallery then. For each patch, we need to calculate the distan
between itself and0 x 5 = 5000 patchel. If there are300
patches per image, it amounts %600 x 300 = 1,500,000

1) KISSME: Among all the methods, KISSME was the distances per image, which is more than 11 Megabytes in
fastest to train and learn the metric and it performed wellMATLAB double precision. In terms of running on embedded
too. The length of the feature before and after dimensignali devices, memory is often a limited resource.
reduction was determined from the source code and feature
dataset provided. However, to calculate the time taken fo
feature extraction, we wrote the code as per their peger [4]:
We divide the image into overlapping blocks of ske 16 and Cumulative Matching Characteristics(CMC)[25] is widely
stride of 8 x 8 to get105 patches. We took histograms of 24 used in person re-identification performance evaluatian. |
bins per channel and uniform LBP of 59 bins. So in total, thetreats person re-identification as a ranking problem. Riank-
feature size i405 x 3 x 2 x 24+ 105 x 59 = 21315 dimensions.
The histogram extraction of HSV and LAB and LBP features 3except for two top and two bottom rows

B. Runtime and Feature Length

. Cumulative Matching Characteristics (CMC) curves




implies that the correct match has been found whereas Rankg]
k implies there weré — 1 wrong classes ahead of the correct
class. CMCk) measures the probability that the correct match
has a rank equal or higher than[10]. Tabl€lM shows Rank- 3]
1 score of various algorithms. It shows Saliency has better
performance although it is computationally expensive &gt h 4]
data size. KISSME on the other hand looks the best to be
implemented on distributed system as it is shown to be fast
and computationally inexpensive as well.

(5]
o Cumulative Matching Characteristic (CMC)
[6]
. [7]
20% (8]
—%— KISSME
ig —6— SDALF
5 —— UnsupervisedSaliency
0 [9]
12345678910 12 16 20
Rank
Fig. 8. Performance of the algorithms in VIPeR dataset [10]
V. CONCLUSION
[11]

In this paper, we explored the possibilities of implemegtin
person re-identification algorithms on distributed systekive
studied KISSME, SDALF and Unsupervised Saliency matchyi2]
ing in terms of their runtime, size of descriptor, along with
their person re-identification performance. We also looaed
time and energy cost of communicating with neighbouringl13]
systems using various wireless technologies. Unsupe&fvise
Saliency has better Rark-+esult but it is computationally
the most expensive and the memory requirement is also &Y
highest. Even though we did not mention the energy cost
for computing on the distributed platform, this would also
consume high amount of energy. SDALF on the other handts]
has smallest signature before dimensionality reductiod an
potentially could be made even smaller by removing RHSH16]
features. In theory at least, SDALF and Saliency featureg ma
be reduced using dimensionality reduction as well. But thase
on our experiments, without any modifications, KISSME is
the best algorithm for a distributed system owing to its low
complexity and shortest signature length. The only drakbacig)
is that it has to be trained and the large covariance matrices
has to be computed and communicated to the neighbours.

(17]

19
This paper explored only the consequences of using dis[— ]

tributed systems for person re-identification systems wher

communication between the sensor nodes is a requiremento]
But in some cases there might be a question between commu-
nicating or processing on its own. Even with communicating

between nodes, there is a question of which node to commu?l]
nicate to when multiple nodes are available. In future, wee ar
interested in answering these questions. 22]
VI.
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