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Abstract—In this work, we consider the detection of ma-
noeuvring small objects with radars. Such objects induce low
signal to noise ratio (SNR) reflections in the received signal.
We consider both co-located and separated transmitter/receiver
pairs, i.e., mono-static and bi-static configurations, respectively,
as well as multi-static settings involving both types. We propose
a detection approach which is capable of coherently integrating
these reflections within a coherent processing interval (CPI) in all
these configurations and continuing integration for an arbitrarily
long time across consecutive CPIs. We estimate the complex value
of the reflection coefficients for integration while simultaneously
estimating the object trajectory. Compounded with this is the
estimation of the unknown time reference shift of the separated
transmitters necessary for coherent processing. Detection is made
by using the resulting integration value in a Neyman-Pearson test
against a constant false alarm rate threshold. We demonstrate
the efficacy of our approach in a simulation example with a
very low SNR object which cannot be detected with conventional
techniques.

Index Terms—radar detection, coherent integration, non-
coherent integration, bi-static radar, multi-static radar, target
tracking, synchronisation.

I. INTRODUCTION

THE detection of manoeuvring and small objects with

radars is a challenging task [1] and is a highly desir-

able capability in surveillance applications [2]. Radars emit

modulated pulses towards a surveillance region and collect

reflected versions of the transmitted waveforms from objects in

this area. Small objects induce low signal-to-noise ratio (SNR)

signals at the radar receiver. The decision on object presence

is made by testing the hypothesis that the received signal

contains reflections against the noise only signal hypothesis

after the front-end input is filtered with a system response

matching the probing waveform, which is known as the

matched filter (MF) [3].

In order to detect low SNR objects, many such pulse returns

(i.e., multiple measurements) need to be considered as each

reflection is at a level similar to the noise background. The

sufficient statistics of multiple pulse returns are found by sum-

ming the associated reflection coefficients across them, which

is referred to as pulse integration [3, Chp.8]. This process

is applied on the sampled outputs of the MF stage. These

samples correspond to, in effect, measurements corresponding
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to resolution bins in an equally divided range space. In con-

ventional processing, beam-forming and Doppler processing

with these samples are used to further segment the bearing and

Doppler space into resolution bins and find the corresponding

measurements. Conventional methods for integration over time

such as coherent and non-coherent integration integrate pulse

returns in the same range-bearing and Doppler bins across

time. When objects manoeuvre, however, these reflections

follow a trajectory across these bins, and, these methods fail to

collect evidence on object existence for a long time due to not

taking into account this trajectory. On the other hand, longer

integration time provides higher probability of detection for a

given false alarm rate, in principle.

One possible solution to providing long time integration

for manoeuvring objects is to design filters with long impulse

responses that match multiple pulse returns along a selection

of possible trajectories (see, e.g., [4]& [5]). The number of

filters required in this approach easily becomes impractically

excessive with increasing integration time. An alternative ap-

proach is to employ a dynamic programming perspective and

use a regular probing pulse MF to integrate its outputs along

a trajectory estimated simultaneously which corresponds, in a

sense, to on-line adaptive synthesis of long time MFs.

Trajectory estimation using the outputs of a pulse MF is

often referred to as track-before-detect (see, for example, [6],

[7]). The sample that corresponds to the true object kinematic

state (i.e., location and velocity) is a complex value that is

a sum of the reflection coefficient and background noise [8].

Most track-before-detect algorithms, on the other hand, use the

modulus of the MF within models which describe the statistics

of the modulus of the MF output. These models are averaged

and hence cannot fully exploit the information captured by the

measurements. For example, it is well known that the detection

performance of these methods can be improved by also taking

into account the phase of the data samples [9], in addition to

the modulus.

The best achievable detection performance is obtained by

coherent processing [3], in which one needs to estimate the

complex reflection coefficient from the complex values of

the MF outputs, the latter of which are processed by the

aforementioned algorithms. This corresponds to using a non-

averaged model in which the reflection coefficient is a random

variable that remains the same during what is known as a

coherent processing interval (CPI), and, is generated randomly

for consecutive CPIs [8]. This is challenging partly because

estimation of this quantity with a reasonable accuracy requires

more samples than one can collect at the pulse-width sampling

rate in a coherent processing interval (CPI) [10]. For example,
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Fig. 1. Problem scenario: M transmitters and a ULA receiver to detect a
small object located at rx, ysT with velocity r 9x, 9ysT .

in [11], coherent processing and integration within a CPI is

performed with a very high sampling rate that yields a large

number of samples in the pulse interval.

In [12], we demonstrated that this can be remedied using

a phased array receiver structure. In particular, we introduced

a simultaneous trajectory estimation and long time integration

algorithm in which the integrated value is then tested against

a constant false alarm rate (CFAR) threshold for declaring

the existence or otherwise of an object in a Neyman-Pearson

sense. In [13], we extend this approach for separated trans-

mitter/receiver pairs, i.e., bi-static channels, with an unknown

time reference shift. We recover the synchronisation term

by diverting simultaneous beams towards the tested point

of detection and the remote transmitter thereby relaxing the

commonly used assumption that the remote transmitters and

the local receiver are synchronised (see, e.g., [14], [15]).

In this work, we provide a complete exposition of our

long time integration and trajectory estimation approach in

mono-static and bi-static configurations as well as the multi-

static case. In particular, we consider the system structure in

Fig. 1 where there are multiple transmitters using mutually

orthogonal waveforms. The receiver is a ULA and has the

full knowledge of the transmission characteristics except the

time reference shift of the separately located transmitters. The

front-end signals at the receive elements are the superposition

of noise, signals from direct channels, and, reflections from

objects.

We consider a long time likelihood ratio test conditioned

on a trajectory in a kinematic state space, reflection coeffi-

cients, and, synchronisation terms as unknown parameters. In

order to estimate the kinematic quantities, we use a Markov

state-space model in which the object state consists of lo-

cation and velocity variables. The measurement model of

this state space model involves the radar ambiguity function

parametrised on the aforementioned reflection coefficients.

These coefficients are estimated by using an expectation-

maximisation algorithm [16] realising a maximum likelihood

(ML) approach within Bayesian filtering recursions for state

trajectory estimate. We show that this is an empirical Bayesian

method [17] for realising the update stage of the filter. When

these ML estimates are reasonably accurate, the empirical

Bayes update is an accurate approximation to the otherwise

intractable filtering update equations. For synchronisation, we

employ a digital beam-forming technique to simultaneously

Fig. 2. Geometry of the problem: A ULA receiver co-located with a
transmitter and another transmitter placed in a separate location on the 2D
Cartesian plane. Both polar and Cartesian coordinate variables are depicted.
Each transmitter emits N pulses in a CPI. The waveforms used are orthogonal.

divert beams towards both the test points of detection and the

locations of the separately located transmitters in order to find

the respective time reference shifts in the bi-static channels.

The resulting algorithm enables us to collect the entire

evidence of object existence at the receiver by i) performing

coherent integration in both mono-static and bi-static channels

within a CPI, ii) non-coherently integrating across different

(non-coherent) channels, e.g., local mono-static and remote

bi-static channels, and, iii) continuing integration for an ar-

bitrarily long interval that contains many CPIs. As a result,

this approach enables us to detect manoeuvring and low SNR

objects which cannot be detected using other techniques.

This article is organised as follows: Section II gives details

of the problem scenario and introduces the mathematical

statement of the problem. In Section III, we discuss trajectory

estimation with the array measurements and detail the afore-

mentioned empirical Bayes approach. In Section IV, we first

introduce an expectation-maximisation (EM) algorithm for the

ML estimation of the complex reflection coefficients. Then,

we detail the ML estimation of the synchronisation term. We

combine these estimators and specify the proposed detection

scheme in Section V. The proposed detection algorithm is

demonstrated in Section VI in comparison with a clairvoyant

detector and a conventional scheme in a scenario with a

manoeuvring and very low SNR object. Finally, we conclude

in Section VII.

II. PROBLEM STATEMENT

Let us consider the problem scenario in Fig. 1 with a ULA

receiver (depicted by red dots), and, M transmitters (depicted

by triangles) one of which is co-located with the receiver

forming a mono-static pair. The other transmitters are located

elsewhere and form bi-static pairs with the receiver.

The receiver is comprised of L elements spaced with a

distance of d which will be specified later in this section.

Each element collects reflected versions of the transmitted

waveforms emitted by both the co-located and the separately

located transmitters thereby forming mono-static and bi-static

pairs, respectively.

A. Spatio-temporal signal model

A detailed model for the signals induced at the receiver array

by reflections from an object is as follows: We consider an
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interval of time in which each transmitter emits N consecutive

waveforms ũmptq separated by a time length of T after mod-

ulating with a common carrier that has an angular frequency

of ωc “ 2πfc. The mth transmitted signal is therefore given

by

umptq “ Re

#

N´1
ÿ

n“0

ũmpt ´ nT qejωct

+

, (1)

where Ret¨u denotes the real part of its input complex argu-

ment and T is known as the pulse repetition interval (PRI).

We assume that tũmuMm“1 is an orthogonal set of waveforms

of pulse duration Tp and bandwidth B, i.e.,

ă ũmptq, ũm1 ptq ą fi

ż Tp

0

ũmptqũ˚
m1 ptqdt

“ δm,m1 (2)

for m,m1 P t1, . . . ,Mu, where δm,m1 is Kronecker’s delta

function.

Use of such orthogonal transmit waveforms underlies the

vision of multiple-input multiple-output (MIMO) radars [18],

[19] a particular configuration of which is, hence, the system

considered here. Design of orthogonal sets for MIMO sensing

was investigated with various objectives such as maximisation

of diversity [20] and waveform identifiability [21]. In this

work, we consider a narrowband regime in which frequency

division multiplexing can be used to achieve orthogonality in

practice.

In order to specify the received signal at the array elements,

let us consider the geometry of the problem which is illustrated

in Fig. 2 for M “ 2 transmitters. The receiver array measures

the superposition of signals from different channels which

are depicted by coloured lines. In particular, there are i) a

local (mono-static) channel (red line), ii) a remote (bi-static)

channel (green line), and, iii) a direct channel from the remote

transmitter (green dashed line). The first two are reflection

channels propagating the reflected waveforms from the object

(black circle) towards the receiver array. These channels can

be fully separated given the array data by exploiting the

orthogonality of the waveforms over time and the capability

of spatial filtering thereby diverting multiple beams towards

arbitrary arrival angles, simultaneously. These points will

become clear in the sequel.

Let us model the signals in the reflection channels. We

assume that the reflectivity of the object remains coherent (i.e.,

unchanged) during the collection of reflections from the N

pulses in (1). Such a time interval is known as a coherent

processing interval (CPI). Modelling of the direct channel

signals is introduced later in Section IV-B.

The kinematic state of the reflector (depicted by a black dot)

in the 2D Cartesian plane is given by X “ rx, y, 9x, 9ysT , where

rx, ysT is the location, r 9x, 9ysT is the velocity, and T denotes

vector transpose. The distance of X to the receiver is related

to pulse time of flights. The overall distance a pulse emitted

by the mth transmitter at rxm, ymsT and reaches the receiver

at rx1, y1sT after getting reflected at rx, ysT is given by

RmpXq “ Rtx
mpXq ` RpXq (3)

Rtx
mpXq fi

a

px ´ xmq2 ` py ´ ymq2.

RpXq fi

a

px ´ x1q2 ` py ´ y1q2

where Rm and R denote the distance from the object to the

mth transmitter and to the receiver, respectively.

The corresponding time of flights are found as

τmpXq “ τ txm pXq ` τpXq (4)

τ txm pXq fi
Rtx

mpXq

c
, τpXq fi

RpXq

c
,

where c « 3.0e8m{s is the speed of light.

The velocity of the object induces an angular frequency

shift on reflections which is known as the Doppler shift. This

quantity is given by

ΩmpXq “
2πT

λc

´

9x ˆ pcos θpXq ` cos θmpXqq

` 9y ˆ psin θpXq ` sin θmpXqq
¯

, (5)

where θ and θm are the angle of arrival (AoA) of the reflec-

tions to the receiver and the bearing angle of the object with

respect to the mth transmitter, respectively. These quantities

are given by

θpXq “ arctanpy1 ´ yq{px1 ´ xq

θmpXq “ arctanpym ´ yq{pxm ´ xq. (6)

For narrowband reflections, the signals induced at the array

elements are characterised by a spatial steering vector as a

function of θ which is given by [22, Chp.2]

sspθq “
”

1, e´jωc
d
c
sin θ, . . . , e´jωcpL´1q d

c
sin θ

ıT

,

where d is the separation between the array elements selected

as half of the carrier wavelength, i.e., d “ λc{2. Substituting

this quantity together with c “ λc ˆ fc in the equation above

leads to

sspθq “
”

1, e´jπ sin θ, . . . , e´jpL´1qπ sin θ
ıT

. (7)

The superposition of the reflections after demodulation at

the receiver is given using (7) and (5) by

zptq “ sspθq
M´1
ÿ

m“0

N´1
ÿ

n“0

αmejnΩme´jωcpτm`∆tmq

ˆũmpt ´ τm ´ ∆tm ´ nT q, (8)

where αm is a complex coefficient modelling the reflectivity

in the mth channel, and, τm is the time of flight of a pulse

given in (4). Here, ∆tm is an unknown time shift modelling

the time reference difference between the mth transmitter and

the receiver (i.e., a synchronisation term).

The reflections in the received signal are optimally searched

by matched filtering [8], i.e., by convolving the input with

inverted versions of the probing waveforms. In our scenario,

this corresponds to a bank of M filters, (see, e.g. [19, Chp.3]).

Owing to the orthogonality (asserted by (2)), the M channels
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Fig. 3. Data acquisition in the mth channel: Sampled version of the received
signal within a CPI as a radar data cube. The output of the matched filter is
sampled and arranged in array index, fast time and slow time axis.

in (8) will have been separated at the filter outputs1. The output

of the mth filter is given by

zmptq fi zptq ˚ ũmp´tq

“ αmsspθq
N´1
ÿ

n“0

ejnΩme´jωcpτm`∆tmq

ˆΛmpt ´ τm ´ ∆tm ´ nT q. (9)

where ˚ denotes convolution and Λmp¨q is the auto-correlation

of the mth waveform given by

Λmptq “ ũmptq ˚ ũmp´tq

“

ż Tp

0

ũmpt1qũ˚
mpt1 ´ tqdt1. (10)

This output is sampled with a period that equals to the pulse

duration Tp. Let us assume that T is an integer multiple of

Tp, i.e., T “ Γ ˆ Tp where Γ P Z
`. Γ ˆ N samples of this

discrete time vector sequence is given by

zmrγs “ zmpγTpq, γ “ 1, . . . ,Γ ˆ N, (11)

“ αmsp∆tmqsspθqstpτm,ΩmqT

ˆ

»

—

—

—

—

–

ΛmpγTp ´ τm ´ ∆tmq

ΛmpγTp ´ τm ´ ∆tm ´ T q

...

ΛmpγTp ´ τm ´ ∆tm ´ pN ´ 1qT q

fi

ffi

ffi

ffi

ffi

fl

,

where

sp∆tmq fi e´jωc∆t, (12)

st

`

τ 1,Ω1
˘

fi e´jωcτ
1

ˆ
”

1, ejΩ
1

, . . . , ejpN´1qΩ1
ıT

. (13)

The term st will be referred to as the temporal steering vector.

Next, this vector sequence is arranged as a cube by folding

the two dimensional data array in (11) in lengths of Γ samples.

The nth layer of the resulting cube corresponds to the samples

collected between the nth and the following pulse, i.e.,

Cmrns fi

”

zmrnΓs, zmrnΓ ` 1s, . . . , zmrpn ` 1qΓ ´ 1s
ı

1Perfect orthogonality of waveforms might not be achievable in practice,
nevertheless, design of waveforms with a fairly small mutual cross-correlation
has been a productive research area which is also discussed, for example, in
[19, Chp.2].

This processing chain is illustrated in Fig. 3 together with

the cube Cmrns which is also known as the radar data

cube [3]. The axes of this cube are array index, slow time

and fast time. In the fast time axis, we have Γ samples of the

filter output, each of which is associated with a time delay of

the reflected signal. These time delays correspond to time of

flights which can easily be converted to range values using (4).

As a result, N array measurements from range bin r is a slice

along the slow time axis given by

Z̃mprq fi

”

zmrrs, zmrΓ ` rs, ¨ ¨ ¨ , zmrpN ´ 1qΓ ` rs
ı

“ αmsp∆tmqsspθqstpτm,ΩmqT

ˆΛmprTp ´ τm ´ ∆tmq.
(14)

For convenience regarding the notation in the rest of this

article, we stack columns of Z̃mprq and form a LN ˆ 1 data

vector. Before specifying this vector, let us combine the signal

model in a single entity as a function of the reflector kinematic

state X which induces the signals and the range bin r which

is the measurement index:

smpr,Xq fi sp∆tmqsspθpXqq b stpτmpXq,ΩmpXqq

ˆΛmprTp ´ τmpXq ´ ∆tmq (15)

where b denotes the Kronecker product operator. Here, X “
rx, y, 9x, 9ys is related to the data vector through the associated

time of flight τm and pR, θ,Ωmq found by evaluating (3)–(6).

The rth column measurement vector for the hypotheses that a

reflector object exist at X and the null hypothesis are hence

given by

Zmprq “

#

αmsmpr,Xq ` nmprq , H1 holds,

nmprq , H0 holds,
(16)

where nmprq „ CN p.;0,Σmq models the noise background

of the mth channel and is a complex Gaussian random variable

with zero mean and covariance of Σm.

Note that, for the (local) mono-static channel m “ 1, and,

(16) is found for τm “ 2R{c and the synchronisation term

∆tm “ 0 in (15). For m ą 1, the measurement vectors are

associated with the (remote) bi-static channels, and ∆tm is

non-zero and unknown.

B. Problem definition

We would like to perform a hypothesis test based on the

measurement model in (16). These measurements are complex

numbers and we are interested in the evaluation of the suffi-

cient statistics for the two hypothesis. Detection/processing

using complex measurements are often referred to as coherent

detection/processing and conventionally the input is the same

resolution bin over multiple pulse returns [3]. Therefore, in

order for this operation to maintain coherence, the target

position should not be changed.

In order to extend coherent processing to the case of

manoeuvring objects and remote transmitters, we introduce

the mathematical statement of the problem as evaluation of a

likelihood-ratio i) using complex versions of measurements (as
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opposed to, for example, using only their moduli) for all M

reflection channels, and, ii) for a time window of K CPIs given

an object trajectory tXkuKk“1 where Xk “ rxk, yk, 9xk, 9yksT is

the object kinematic state at the kth CPI. This likelihood ratio

will then be tested against a threshold in a Neyman-Pearson

sense [23, Chp.3]. The detector we consider hence takes the

form

LpZ1,1:K , . . . ,ZM,1:K |X1:K ,α,∆tq
H1

ż
H0

T (17)

where Zm,1:K are the data cubes for channel m over k “
1, . . . ,K . Here, α and ∆t are reflectivity and synchronisation

vectors across the channels, respectively, defined by

α fi rα1,1, . . . , α1,K , . . . , αM,1, . . . , αM,Ks,

∆t fi r∆t1,∆t2, . . . ,∆tM s.

In order to carry out the test in (17), the trajectory X1:K

needs to be estimated. This is also referred to as tracking and

is the subject of Section III along with estimation of the reflec-

tion coefficients α. Algorithmic strategies for estimating the

synchronisation term ∆t are introduced in Section IV. These

results are combined in Section V and threshold selection is

detailed in order to evaluate the detection test in (17).

C. Sufficient statistics for the likelihood ratio

The likelihood ratio on the left hand side of (17) factorises

over as the noise samples for different CPIs are also indepen-

dent. Each time term also factorises over channel likelihood

ratios as the related parameters are independent, i.e.,

L “
K
ź

k“1

M
ź

m“1

lpZm,k|Xk, αm,k,∆tm, H “ H1q

lpZm,k|Xk,∆tm, H “ H0q
. (18)

These measurements also satisfy a locality property in that

the number of range bins which are associated with Xk is

limited by the support of Λ in (10) which is of duration 2Tp.

Let us define the (range) extend of an object as

EmpXkq “

$

’

’

&

’

’

%

trm,k, rm,k ` 1u, rm,kTp ă τmpXkq ` ∆tm

trm,ku, rm,kTp “ τmpXkq ` ∆tm

trm,k ´ 1, rm,ku, rm,kTp ą τmpXkq ` ∆tm

,

(19)

where

rm,k fi

„

τmpXkq ` ∆tm

Tp



, (20)

with r.s denoting the nearest integer function, and τmpXkq `
∆tm gives the time of flight in the mth channel associated with

the object state Xk. This range bin has the highest signal-to-

noise ratio (in the mth channel) given that Λ as a time auto-

correlation function typically vanishes towards tails.

As a result, the likelihood ratio in (18) further decomposes

into factors over range bins as

L “
K
ź

k“1

M
ź

m“1

ź

rPEmpXkq

lpZm,kprq|Xk, αm,k,∆tm, H “ H1q

lpZm,kprq|H “ H0q
,

(21)

The numerator terms in (21) can easily be found using the

distribution of the noise in the signal model in (16) as

l pZm,kprq|Xk, αm,k,∆tm, H “ H1q

“ CN
´

Zm,kprq;αm,ksmpr,Xkq,Σm

¯

. (22)

The denominator in (21) regarding the noise only hypothesis is

nothing but the noise density evaluated at Zm,kprq. Therefore,

the instantaneous likelihood ratio in (21) after substituting

from (22) and the noise distribution is found as

LpZm,kprq|Xk, αm,k,∆tmq

fi

CN
´

Zm,kprq;αm,ksmpr,Xkq,Σm

¯

CN
´

Zm,kprm,kq;0,Σm

¯

“ exp
!

2Re
 

α˚
m,ksmpr,XkqHΣ´1

m Zm,kprq
(

)

ˆ exp
!

´ |αm,k|2smpr,XkqHΣ´1
m smpr,Xkq

)

, (23)

where p.qH is the Hermitian of its argument, Ret.u takes the

real part of its complex argument, pq˚ denotes conjugate and

|.| denotes modulus of a complex variable, respectively.

The likelihood ratio evaluation given in (23) is advantageous

in that only a linear operation needs to be performed on the

measurements which is in the form of a whitening transform

with the inverse noise covariance followed by an inner product

with the signal model. Because the signal model involves the

spatial steering vector in (7), this inner product effectively

performs beam-forming on the measurements filtering out

contributions of other objects at the same range. Note that a

second filtering is with respect to the Doppler as the temporal

steering vector (13) is also in the signal model.

III. SIMULTANEOUS TRACKING AND REFLECTION

COEFFICIENT ESTIMATION

In this section, we consider estimation of the object tra-

jectory X1:K using coherent pulse returns during a CPI.

Object trajectories are modelled as random vector sequences

generated by a Markov state space model [24], i.e.,

X1:K „ ppX1q
K
ź

k“2

ppXk|Xk´1q, (24)

where the Markov transition density is selected as

ppXk|Xk´1q “ N pXk;FXk´1, Qq

F “

»

—

—

—

–

1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

fl

, (25)

where ∆ is the time interval between two consecutive pulse

train transmissions (or, the illumination period), F models

constant velocity motion, and Q is the covariance matrix

specifying the level of the process noise modelling unknown

manoeuvres.

The initial distribution ppX1q is selected as a uniform dis-

tribution over the range-bearing interval for the detection test.
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These intervals often correspond to radar specific resolution

bins. Let us denote the corresponding bounded set in the state

space by B, and a uniform distribution on B by UB. Therefore,

ppX1q “ UBpX1q. (26)

Sequential estimation of X1:K as data cubes arrive is

performed by using Bayesian recursive filtering [24]. Suppose

we have the given distribution of the state variable at the time

step k ´ 1 based on all the measurements collected up to

and including CPI k ´ 1, i.e., ppXk´1|Z1:k´1q. In order to

update this prior information with the measurement at the kth

CPI, first, the Chapman-Kolmogorov equation is realised and

a prediction density is found as

ppXk|Z1:k´1q “

ż

ppXk|Xk´1qppXk´1|Z1:k´1qdXk´1,

(27)

where the first term inside the integral is the Markov transition

given by (25).

The update stage of the filtering is given by multiplying

this prediction and the measurement likelihood together with

marginalising out all other variables, i.e.,

ppXk|Z1:kq 9

ż

αk

ż

∆t

lpZk|Xk,αk,∆tq

ˆppαkqpp∆tqppXk|Z1:k´1qdαkd∆t, (28)

where ppαkq and pp∆tq are prior densities for the reflection

coefficient and the synchronisation term, respectively.

The measurement likelihood in (28) is the product of the

numerator terms in the likelihood ratio in (21) over the object’s

range bins and channels for the time step k, i.e.,

l pZk|Xk,αk,∆tq

9
M
ź

m“1

ź

rPEmpXkq

lpZm,kprq|Xk, αm,k,∆tm, H “ H1q,(29)

and is easily computed by evaluating complex Gaussian den-

sities as discussed in Section II-C.

The marginalisation of the reflection coefficients and syn-

chronisation terms, however, is not straightforward: First, one

needs to select prior densities for these terms. One reasonable

approach is to use a non-informative prior such as Jeffrey’s

prior [25, Chp.5]. These priors are useful when they lead to

tractable computations in (28) (see, e.g., [26]). In our problem

setting, however, Jeffrey’s priors for the reflection coefficients

and the synchronisation terms are constant, and, do not help in

finding a tractable form for the full Bayesian update in (28).

In order to tackle this challenge, we use an empirical Bayes

approach [17]. These methods approximate the integration

in (28) by solving an optimisation problem for finding the

likely values of the unknowns and evaluating the integrand at

those values. In other words, (28) is rewritten as

ppXk|Z1:kq “
ż

αk

ż

∆t

ppXk|Z1:k,αk,∆tqppαk,∆t|Z1:kqdαkd∆t. (30)

Here, the reflection coefficients and the synchronisation

terms act as model parameters to be selected and the second

term inside the integration is similar to a prior for them.

Because this prior is conditioned on the measurements, more

probability mass should be concentrating around the maximum

likelihood (ML) estimates of these values. Let us select this

density as

ppαk,∆t|Z1:kq “ ppαk|Z1:kqpp∆t|Z1:kq

ppαk|Z1:kq Ð δα̂k
pαkq

pp∆t|Z1:kq Ð δ∆t̂
p∆tq, (31)

where Ð denotes assignment and δ is Dirac’s delta distri-

bution. In other words, we select the model densities given

the measurements as a Dirac’s delta distribution concentrated

around their ML estimates α̂k and ∆t̂, respectively.

After substituting from the empirical priors in (31) into

(30), one obtains the empirical Bayes update as

ppXk|Z1:kq 9„ lpZk|Xk, α̂k,∆t̂qppXk|Z1:k´1q (32)

where 9„ denotes approximate proportionality. The approxima-

tion accuracy is better when these ML estimates are obtained

using informative likelihoods (as quantified by their Fisher

information) and equivalently have small CRLBs.

We will detail ML estimation of the reflection coefficients α

and the synchronisation terms ∆t in Section IV. For the re-

maining part of this section, let us assume that these estimates

are given.

For realising the recursive filtering, a sequential Monte

Carlo (SMC) approach known as the particle filter is used

[27]. In particular, we use a bootstrap filtering approach for

estimating the object trajectory.

The prediction stage at the time step k “ 1 is realised

by forming a regular grid of P points over B representing

samples generated from the initial state distribution in (26).

These points constitute an equally weighted set of particles.

For k ą 1, we will have found weighted samples, or, particles,

representing the state posterior in the previous step. Let us

denote this set by

!

X
ppq
k´1, ζ

ppq
k´1

)P

p“1
,

where ζ
ppq
k´1 is the weight of the pth sample. The prediction

stage is then realised by sampling from the Markov transi-

tion as

X
ppq
k|k´1

„ pp ¨ |X
ppq
k´1q, p “ 1, . . . , P. (33)

The weights of these samples in the particle set

tX
ppq
k|k´1

, ζ
ppq
k|k´1

u is given by

ζ
ppq
k|k´1

“ ζ
ppq
k´1, (34)

in order for this set to represent the prediction density in (27).

In the update stage, the same sample set is used to represent

the state posterior in (32), i.e.,

X
ppq
k Ð X

ppq
k|k´1

p “ 1, . . . , P, (35)

where Ð denotes assignment.

The weights of these samples need to be adjusted using

the measurement likelihood (as per the importance sampling
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principle [28]), i.e.,

ζ
ppq
k “

ζ̃
ppq
k

řP

p1“1 ζ̃
pp1q
k

, (36)

ζ̃
ppq
k “ ζ

ppq
k|k´1

lpZk|Xk “ X
ppq
k , α̂k,∆t̂q,

After finding the normalised weights in (36), we test de-

generacy of the weighted particles. The degeneracy test is

performed by finding the number of effective particles using

Neff “
1

řP

p“1

´

ζ
ppq
k

¯2
, (37)

and, comparing it with a threshold Teff . When Neff ă Teff ,

we perform re-sampling (see, e.g., [27]) and continue filtering

with a new, equally weighted sample set

tζ
ppq
k Ð 1{P,X

ppq
k Ð X̃

ppq
k uPp“1,

where tX̃ppqu is output by the re-sampler.

Using the above particle filter, the object state Xk at the

kth CPI is estimated by using the empirical weighted average

X̂k “
P
ÿ

p“1

ζ
ppq
k X

ppq
k|k´1

, (38)

where X̂k denotes the estimated object state Xk.

A remarkable feature of the processing scheme driven by

the Bayesian recursions above is that no fixed selection of

the spatio-temporal steering vectors are used. The evaluation

of the likelihood in the update stage in (36) specifies the

steering vectors through (22) and (15) as a function of the

state value X
ppq
k . Because X

ppq
k are generated by sequential

processing of the data cubes over CPIs, the resulting set of

spatio-temporal steering vectors adapt to the measurements.

This is in stark contrast with conventional processing chains

in which the bearing and Doppler space is sampled with

equal size steps leading to a fixed set of steering vectors and

corresponding resolution bins. Thus, a super-resolution effect

is achieved when finding the object locations as demonstrated

in Section VI.

IV. MAXIMUM LIKELIHOOD ESTIMATION OF UNKNOWN

PARAMETERS

In this section, we first introduce the ML estimator for the

reflection coefficients. This estimator is an iterative algorithm

realising Expectation Maximisation at each step of the re-

cursive filtering detailed in Section III– in particular when

evaluating the tracking update in (36)–and, is also central to

long time integration detailed later in Section V. Second, we

derive the ML synchronisation term estimator used together

with the reflectivity estimator in the filter update in Section III.

A. ML estimation of the reflection coefficients

The reflection coefficients associated with an object at state

Xk are unknown constants for the duration of a CPI and

vary across consecutive CPIs due to the change of the object

position, orientation etc. The likelihood of these reflectivities is

Algorithm 1 Particle EM algorithm for estimation of the

reflection coefficients

1: Input: αp0q, ǫ Ź Initial guess and termination threshold

2: Input: tζ
ppq
k|k´1

X
ppq
k|k´1

uPp“1Ź Particles from ppXk|Z1:k´1q

3: i Ð 1, αp1q Ð 8 Ź Initialisation for the iterations

4: while ‖ α
piq ´ α

pi´1q ‖ ą ǫ do Ź Test convergence

5: Find Q̂pαk,α
pi´1q
k q in (44) using (42), (43) Ź E step

6: Find α
piq ÐÝ tα̂m,kuMm“1 using (45),(43) Ź M step

7: i ÐÝ i ` 1

8: end while

9: Return α̂k Ð α
piq

found by multiplying the likelihood in (29) with the priors for

the other parameters and marginalising them out. Let us use

the empirical prior for the synchronisation term (see, e.g., (31))

obtained using the ML estimator detailed in the next section.

The likelihood to be maximised for estimation is hence found

as

lpZk|αkq “

ż

X

lpZk|Xk,αk,∆t “ ∆t̂qppXk|Z1:k´1qdXk.

(39)

It is not straightforward to optimise this function due to

the marginalisation involved. In ML problems involving such

latent variables as the state variable Xk, the expectation

maximisation (EM) method offers an iterative and gradient-

free solution [16]. In this method, starting from an initial

parameter configuration α
p0q
k , an expectation that replaces the

original likelihood is maximised. For the problem at hand,

these iterations are given for i “ 1, 2, . . . by

α
piq
k “ argmax

α

Qpαk,α
pi´1q
k q

Qpαk,α
pi´1q
k q fi EtlpZk|Xk,αk,∆t “ ∆t̂q|Z1:k´1,α

pi´1q
k u

9

ż

Xk

log lpZk|Xk,αk,∆t̂q

ˆppXk|Z1:k,α
pi´1q
k ,∆t̂qdXk. (40)

Let us focus on the computation of the expectation in (40)

and its maximisation. The state density function underlying the

expectation is a state posterior conditioned on the previously

found value of the reflectivities, i.e.,

ppXk|Z1:k,α
pi´1q
k ,∆t̂q

9 lpZk|Xk,α
pi´1q
k ,∆t̂qppXk|Z1:k´1q, (41)

where the density function on the right hand side is nothing but

the predictive density of the Bayesian filtering recursions given

in Section III. Thus, the samples generated in the prediction

stage in (33) and (34) lead to an importance sampling [28]

estimate of the expectation. Given
!

X
ppq
k|k´1

, ζ
ppq
k|k´1

)P

p“1
, this

importance sampling estimate is given by

Q̂pαk,α
pi´1q
k q

9„

P
ÿ

p“1

ξpi´1q
p log lpZk|Xk “ X

ppq
k|k´1

,αk,∆t̂q, (42)
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ξpi´1q
p “

lpZk|Xk “ X
ppq
k|k´1

,α
pi´1q
k ,∆t̂qζ

ppq
k|k´1

řP

p1“1 lpZk|Xk “ X
pp1q
k|k´1

,α
pi´1q
k ,∆t̂qζ

pp1q
k|k´1

,(43)

where Q̂ denotes the estimate of the term proportional to Q

in (40).

This approximation is a sum of terms quadratic in αk. This

can easily be seen by substituting from (29) and (22) to (42).

The resulting expression is given in (44) (see the top of the

next page). After taking the first order partial derivative of this

expression with respect to αm,k and setting it to zero, the the

ML estimate of the mth reflection channel is found in closed

form given in (45) (see the top of this page).

Note that the ML estimator in (45) takes the inner product

of the “whitened” measurements with the signal model sm

given in (15) for each state particle X
ppq
k|k´1

. This operation

effectively performs digital beam-forming towards the particle

state in space, and, matches its approach speed through its

Doppler frequency encoded in sm. As a results, the estimator

will not be interferred by other objects unless they appear very

close to the state value in terms of the achievable spatial and

Doppler resolution.

After finding α̂
piq
k “ tα̂m,kuMm“1 for M reflection coef-

ficients using (45), convergence is tested by comparing the

norm of the difference between the parameter configurations

found in consecutive time steps with a threshold, i.e., iterations

are terminated at i if

‖ α
piq
k ´ α

pi´1q
k ‖ ă ǫ,

where ‖.‖ denotes the complex Euclidean norm. A pseudo-

code of these steps are given in Algorithm 1.

B. Synchronisation of the local processor with remote trans-

mitters

In this section, we detail the ML estimation of the unknown

synchronisation term ∆tm parametrising the time origin shift

between the local receiver and the mth separately located

transmitter. Our approach exploits the fact the data cube for

the mth bi-static channel contains direct path signals from

the transmitter that can be recovered by diverting a digital

beam towards the transmitters spatial state simultaneously with

other processing tasks on the data cube, e.g., those related

to trajectory estimation and reflectivity estimation for other

spatio-temporal points.

The direct path signal in the mth channel can easily be

modelled using the spatial and temporal steering vectors

defined in Section II in (7) and (13), respectively. The state

of the mth transmitter is given by Xm “ rxm, ym, 0, 0sT

which is associated with the time-of-flight τpXmq given in

(4) as the time to receiver. The angle of arrival is denoted

by θmpXmq which is computed using (6). Different from a

reflection channel, the unknown reflectivity is replaced with a

known pulse energy term. Thus, the CPI measurement vector

at the rth range bin obtained by sampling the mth matched

filter output is given by

Zmprq “
a

Ems̃mpr,Xmq ` nmprq, (46)

s̃mpr,Xmq fi sp∆tmqsspθmpXmqq b stpτpXmq,ΩmpXmq “ 0q

ˆΛmprTp ´ τpXmq ´ ∆tmq,

“ sp∆tmqspτpXmqq ˆ sspθmpXmqq b 1

ˆΛmprTp ´ τpXmq ´ ∆tmq,

where Em is the pulse energy, s̃m is the noise free signal

model associated with the transmitter state Xm, and, 1 is an

N ˆ 1 all ones vector2.

In the presence of reflectors, we will have received a su-

perposition of this signal and reflections from different spatio-

temporal states. In order to recover the direct path signal, a

spatio-temporal steering vector that matches s̃m in (46) is used

which is given by

hpXmq fi sspθmpXmqq b stpτpXmq,ΩmpXmq “ 0q,

“ spτpXmqq ˆ sspθmpXmqq b 1.

Note that this filter is nothing but a (scaled) beam-forming

vector diverting a beam towards θmpXmq and maps the

LN ˆ 1 measurement vector Zmprq to a single complex value

given by

dmprq fi hpXmqHZmprq

“ LN
a

Emsp∆tmqΛmprTp ´ τpXmq ´ ∆tmq

`nmprq. (47)

Here, the noise term is the inner product of the beam-

forming vector and the complex Gaussian measurement noise

in (16), i.e.,

nmprq “ hpXmqHnmprq

which itself is a random variable with a complex Gaus-

sian distribution of mean zero and variance σ2
d,m “

hpXmqHΣmhpXmq.

As a result, the likelihood to be maximised is

lpdmp1q, . . . , dmpΓq|∆tq “
Γ
ź

r“1

CN pdmprq;µd,mp∆tq, σ2
d,mq

(48)

where the expected value of the complex Gaussian distribu-

tions as a function of ∆t is given by

µd,mp∆tq “
a

EmLN expp´jωc∆tmq

ˆ ΛmprTp ´ τpXmq ´ ∆tmq. (49)

Here, only those range bins for which the argument of

Λm falls within p0, 2Tpq contribute to the maximisation –

otherwise, the corresponding distribution is same with that for

the noise term.These range bins are given by

Ẽmp∆tq “

$

’

’

&

’

’

%

trm, rm ` 1u rmTp ă τpXmq ` ∆tm

trmu rmTp “ τpXmq ` ∆tm

trm, rm ´ 1u rmTp ą τpXmq ` ∆tm

, (50)

2Note that s̃m differs from sm in (15) in that the latter uses the bi-static
time-of-flight in both the temporal steering vector and the waveform auto-
correlation delay, whereas, the former uses direct path time-of-flight. Because
the transmitters are of zero Doppler frequency, the temporal steering vector
reduces to an all ones vector scaled with spτpXmqq.



SUBMITTED TO THE IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 9

Q̂pαk,α
pi´1qq “

P
ÿ

p“1

ξpi´1q
p

”
M
ÿ

m“1

ÿ

rPEmpX
ppq

k|k´1
q

´

´ log
`

πLN detpΣmq
˘

´ Zm,kprqHΣ´1
m Zm,kprq

`2Retα˚
m,ksmpr,X

ppq
k|k´1

qHΣ´1
m Zm,kprqu ´ |αm,k|2smpr,X

ppq
k|k´1

qHΣ´1
m smpr,X

ppq
k|k´1

q
¯ı

(44)

α̂m,k “

řP

p“1

ř

rPEmpX
ppq
k|k´1

q
ξ

pi´1q
p smpr,X

ppq
k|k´1

qHΣ´1
m Zm,kprq

řP

p“1

ř

rPEmpX
ppq

k|k´1
q
ξ

pi´1q
p smpr,X

ppq
k|k´1

qHΣ´1
m smpr,X

ppq
k|k´1

q
(45)

where

rm “

„

τpXmq ` ∆tm

Tp



.

Thus, the ML estimator that takes into account k data cubes

at time k starting from the first one is given by

∆t̂m “ argmax
∆tm

Jkp∆tmq

Jkp∆tmq “ log

k
ź

k1“1

ź

rPẼmp∆tq

CN pdm,k1 prq;µd,mp∆tq, σ2
d,mq

9
k
ÿ

k1“1

ÿ

rPẼmp∆tq

pdm,k1 prq ´ µd,mp∆tqq
˚

ˆ pdm,k1 prq ´ µd,mp∆tqq . (51)

Here, the relation between ∆t and the objective function

Jk is a concave relation on the average (and as k increases,

asymptotically). However, (49) does not yield a closed form

solution and render gradient-free iterative methods such as

one-dimensional line search techniques [29] as better alter-

natives. These algorithms require only evaluation of (51) and

iteratively reduce an initially selected interval of uncertainty.

We use the golden section search algorithm [29] and select

and initial interval for ∆t based on a preliminary search

over the grid of values ∆t P t0, Tp, 2Tp, . . . , pΓ ´ 1qTpu
which yields a rough estimate. Let us denote this term

by ∆t̂0
3. The initial interval of uncertainty is selected as

r∆t̂0 ´ Tp,∆t̂0 ` Tps. The golden section search reduces the

width of this interval exponentially to a ratio of p0.618qν´1

after ν iterations [29]. Therefore, in eight iterations, this width

reduces below one tenth of a pulse duration, i.e., Tp{10. This

search is detailed in Algorithm 2.

V. LONG TIME INTEGRATION FOR DETECTION

In this section, we detail the evaluation of the statistical test

given in (17). The sufficient statistics of this test is given in

Section II-C, in particular in (21)–(23). Here, we first combine

the results from Sections III and IV into a single algorithm.

Then, in Section V-A, we provide explicit formulae for finding

the threshold as a function of a selected constant false alarm

rate Pfa and integration time k.

In order to evaluate the likelihood ratio in (21), we first

estimate ∆t using Algorithm 2 for each bi-static channel.

3Note that, equivalently found is

r̂m “

„

τpXmq ` ∆t̂0

Tp



.

Algorithm 2 Maximum likelihood estimation of ∆tm via

golden section line search: The initial interval of uncertainty

is selected as r∆t̂0´Tp,∆t̂0`Tps as detailed in Section IV-B.

1: Input: r∆t1,∆t2s, ǫ Ź Initial interval of uncertainty and

termination threshold

2: α Ð 0.618

3: ∆t̃1 Ð ∆t1 ` p1 ´ αqp∆t2 ´ ∆t1q Ź Evaluation point 1

4: ∆t̃2 Ð ∆t1 ` αp∆t2 ´ ∆t1q Ź Evaluation point 2

5: Compute Jkp∆t̃1q and Jkp∆t̃2q using (51), (49), (47)

6: while |∆t2 ´ ∆t1| ą ǫ do Ź Until ǫ accuracy is reached

7: if Jkp∆t̃1q ą Jkp∆t̃2q then

8: ∆t2 Ð ∆t̃2 Ź New interval:r∆t1,∆t̃2s
9: ∆t̃2 Ð ∆t̃1, Jkp∆t̃2q Ð Jkp∆t̃1q Ź Assignments

10: ∆t̃1 Ð ∆t1 ` p1 ´ αqp∆t2 ´ ∆t1q
11: Compute Jkp∆t̃1q using (51), (49), (47) Ź New

evaluation

12: else

13: ∆t1 Ð ∆t̃1 Ź New interval:r∆t̃1,∆t2s
14: ∆t̃1 Ð ∆t̃2, Jkp∆t̃1q Ð Jkp∆t̃2q Ź Assignments

15: ∆t̃2 Ð ∆t1 ` αp∆t2 ´ ∆t1q
16: Compute Jkp∆t̃2q using (51), (49), (47) Ź New

evaluation

17: end if

18: end while

19: if Jkp∆t̃1q ą Jkp∆t̃2q then

20: Return ∆t̂m “ ∆t1
21: else

22: Return ∆t̂m “ ∆t2
23: end if

Given this quantity, we sequentially estimate the target tra-

jectory X̂k (Section III ) and the reflection coefficients α̂k

using the EM iterations in Algorithm 1 over k “ 1, . . . ,K .

As such, the integration of instantaneous likelihood ratios in

(23) – given the aforementioned estimates– into the test value

in (21) is carried out recursively. For this purpose, let us define

the logarithm of the test value at k as

logLk fi

k
ÿ

k1“1

M
ÿ

m“1

ÿ

rPEmpX̂kq

LpZm,k1 prq|X̂k1 , α̂m,k1 ,∆t̂mq

“ logLk´1 ` LpZkpX̂kq|X̂k, α̂k,∆t̂q (52)

where

LpZkpX̂kq|X̂k, α̂k,∆t̂q

fi

M
ÿ

m“1

ÿ

rPEmpX̂kq

LpZm,k1 prq|X̂k1 , α̂m,k1 ,∆t̂mq
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Algorithm 3 The proposed simultaneous tracking and long

time integration algorithm

1: Input: Data cubes Zm,k for channels m “ 1, . . . ,M , time

steps k “ 1, . . . ,K Ź see (16)

2: Input: Detection threshold TK
3: Initialisation: Generate particles in the cell under test

!

X
ppq
1 , ζ

ppq
1

)P

p“1
Ź see (26)

4: Initialisation: logL0 Ð 0

5: for k “ 1, . . . ,K do

6: if k ě 2 then Ź Prediction stage

7: Generate
!

X
p

k|k´1
, ζ

p

k|k´1

)P

p“1
Ź see (33), (34)

8: end if

9: Find ∆t̂ using Algorithm 2 for m “ 2, . . . ,M Ź see

Section IV-B

10: Find α̂k using the EM iterations in Algorithm 1

11: Update tX
ppq
k , ζ

ppq
k uPp“1 using (35), (36) Ź Update

stage

12: Estimate X̂k using (38)

13: Compute LpZkpX̂kq|X̂k, α̂k,∆t̂q using (53)

14: logLk “ logLk´1 ` LpZkpX̂kq|X̂k, α̂k,∆t̂q Ź
Integration step, see (52)

15: end for

16: if logLK ą log TK then Ź The detection test in (54)

17: Return H1

18: else

19: Return H0

20: end if

“
M
ÿ

m“1

ÿ

rPEmpX̂kq

´

2Re
 

α̂˚
m,ksmpr, X̂kqHΣ´1

m Zm,kprq
(

´ |α̂m,k|2smpr, X̂kqHΣ´1
m smpr, X̂kq

¯

. (53)

Here, (53) is the contribution of the measurements at time k

into the integration in (52). The proposed processing performs

coherent integration of EmpX̂kq ˆ L ˆ N samples during a

CPI in each channel. The integration is non-coherent across

the channels as well as consecutive CPIs. The key is that the

object trajectory is taken into account when performing all

these simultaneously.

The object detection is hence performed by comparing the

output of the aforementioned log-likelihood ratio to a detection

threshold, i.e.,

logLK

H1

ż
H0

log TK , (54)

where log TK is the detection threshold for a given constant

false alarm rate (CFAR) for K steps of integration. The next

section details the computation of this threshold value. A

pseudo-code of the overall process is given in Algorithm 3.

A. Constant false alarm rate threshold for the detection test

In the hypothesis test in (54) it is highly desirable to select

a threshold TK that yields a selected constant false alarm

rate (CFAR) Pfa. For the calculation of TK as function of

Pfa, we consider the distribution of the likelihood ratio given

in (21) under the H “ H0 hypothesis for the measurement

in (16) [23]. Let us find the logarithm of the likelihood ratio

after substituting from (23) into (21):

ηK fi logLK “
K
ÿ

k“1

M
ÿ

m“1

ÿ

rPEmpXkq

ηm,k,r (55)

where the terms inside the summations are given by

ηm,k,r “ 2RetsHm,k,rΣ
´1
m Zm,kprqu ´ s

H
m,k,rΣ

´1
m sm,k,r

sm,k,r “ αm,ksmpr,Xkq. (56)

The distribution of the real variable ηm,k,r is a Gaussian

when the signal model sm,k,r is known and the measure-

ments Zm,kprq are generated from a complex Gaussian [23,

Chp.13], i.e., ηm,k,r „ N p.;µm,k,r, σ
2
m,k,rq, with the moments

given by

µm,k,r “ ´s
H
m,k,rΣ

´1
m sm,k,r,

σ2
m,k,r “ 2sHm,k,rΣ

´1
m sm,k,r.

Owing to the independence of the noise samples, ηK is also

Gaussian for the case, i.e., ηK „ N p.;µK , σ2
Kq, with the

moments given by

µK “
K
ÿ

k“1

M
ÿ

m“1

ÿ

rPEmpXkq

µm,k,r (57)

σ2
K “

K
ÿ

k“1

M
ÿ

m“1

ÿ

rPEmpXkq

σ2
m,k,r. (58)

Therefore, the probability of false alarm Pfa is related to

the test variable ηK in (55) and the threshold TK through

Pfa “ PrtηK ą log TK |H “ H0u

“

ż `8

log TK

N pη1
K ;µK , σ2

Kqdη1
K

“ Q

ˆ

log TK ´ µK

σK

˙

where Qp.q denotes the tail probability function of the standard

normal distribution [23]. As a result, the threshold TK given

Pfa for K steps of integration is found as

TK “ exp
`

Q´1pPfaqσK ` µK

˘

. (59)

As a summary, a CFAR threshold for the proposed long

time integration method is calculated using (56)–(59) given

the true values of the reflectivities and the object trajectory

specifying (56). This clairvoyant threshold is used in the

next section, for comparing Algorithm 3 with the clairvoyant

integrator and a conventional alternative.

VI. EXAMPLE

In this section, we demonstrate the proposed algorithm

through an example and compare the efficacy of this ap-

proach with conventional techniques. We consider a scenario

in which a ULA receiver co-located with a transmitter is

at the origin of the 2D Cartesian plane, and, a separated

transmitter is located at r10m, 500ms (see. Fig. 2). In this

setting, M “ 2 transmitters emit N “ 20 linear frequency
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TABLE I
TRANSMITTED SIGNAL PARAMETERS

Parameter Value

Carrier frequency, i.e., fc 10GHz

Probing waveform bandwidth, i.e., B 1MHz

Probing waveform duration, i.e., Tp 1.0 µs

Pulse repetition interval (PRI), i.e., T 100 µs

Number of range bins, i.e., Γ 100

Number of pulses, i.e., N 20

Number of elements in the ULA, i.e., L 20

Length of the coherent processing interval (CPI) 2ms

Illumination period (∆ in (25)) 0.1 s

Number of transmitters, i.e., M 2
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(a) Typical scenario for an estimated trajectory
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Fig. 4. Example scenario: (a) A low SNR (-6dB) object moves along the
trajectory depicted with the red line. The estimated trajectory by the proposed
algorithm is depicted with the blue line. The range bins resulting from
sampling in time is shown by the dashed red lines. The bearing bins of the
conventional processing chains is shown by the dashed blue lines. (b) RMSE
of the estimated trajectory in (a).

modulated (i.e., up-chirp) waveforms towards a surveillance

region and repeats this illumination pattern every 0.1 s. In this

region, there is a low SNR object with an initial state X0 “
r1000m, 1000m, 10m{s, 50m{ss moving along an unknown

trajectory generated from the object dynamic model defined

in (25). The ULA receiver with L “ 20 elements collects

measurements in accordance with the signal model in (16)

from the local and the remote channels. Superpositioned in
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Fig. 5. Long-time integration using the proposed scheme, the clairvoyant
integrator, and the conventional coherent integrator: The integrated sufficient
statistics from the proposed integration averaged over 100 experiments is
depicted by the solid blue line. The integrated value from the clairvoyant
integrator is the dashed red line and the clairvoyant (CFAR) threshold
(averaged for 100 experiments) is the solid magenta line. The conventional
scheme leads to the solid black line.

the remote channel is the direct probing transmission from the

transmitter. The parameter configuration of these transmissions

are shown in Table I.

We simulate 100 independent sets of trajectories, reflection

coefficients and array measurements. The reflection coeffi-

cients are generated from a complex Gaussian such that the

expected SNR is ´6dB in every channel. The direct signal

from the non co-located transmitter is received with additive

noise using (46) with an SNR of 0dB. The time reference shift

of the remote transmitter and the receiver, i.e., ∆t, is selected

randomly in the range of 0 ă ∆t ă PRI and used for all

experiments.

We use Algorithm 3 for a time that spans 10 s and compare

it with the following to detectors:

1) The clairvoyant detector: This detector uses the ground

truth values of the unknown parameters (i.e., the object

trajectories, reflectivities, and, the synchronisation term)

when evaluating the likelihood ratio test in (21). The

CFAR threshold for this detector is found using (56)–

(59) as discussed in Section V-A.

2) Conventional coherent detector: This detector processes

the measurements after mapping them over a grid of

bearing and Doppler bins. These bins correspond to

resolution cells which are found for the example system

as follows: The bearing resolution is found as ∆θ “ 5.1˝

using ∆θ “ sin´1
`

0.8192
L

˘

. The range resolution is

found as ∆τ “ 150m using ∆τ “ c
2B

(see, e.g., [22]).

The velocity resolution of the conventional processing

is found as ∆V “ 7.5m{s by using ∆V “ λc

2NT
(or,

equivalently, the Doppler resolution ∆ω “ 4πfc
∆V
c
T

as π{10 rad s´1). This detector integrates the mapped

complex values for the same “cell under test” across

time without taking account object manoeuvres [3].

We initiate our algorithm with P “ 400 particles as a

20 ˆ 20 uniform grid over a bounded region of location and

velocity vectors such that the locations span the “cell under

test” 4. As the Bayesian filtering and trajectory estimation steps

4Note that because all the steering vectors during processing are selected by
the Bayesian recursive filtering there is no fixed bearing or velocity resolution
cells for our approach unlike the conventional detector.
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Fig. 6. The proposed scheme (solid blue line) versus the single channel
integrations: The local channel (solid green line) integration, and the remote
channel (solid brown line) integration fail to exceed the detection threshold.
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Fig. 7. Probability of detection pPdq for the proposed scheme in comparison
with the clairvoyant detector and the conventional detector.

iterate, these particles evolve to converge to the true state of

the object simultaneously giving rise to the integrated value in

(52). Fig. 4(a) illustrates a typical trajectory (red line) and the

estimate output by the proposed algorithm (blue line) along

with the resolution bins of the conventional detector Fig. 4(b)

shows the root mean squared error (RMSE) of this estimate

where the error reduces to a reasonably small value after only

a few steps (with each step corresponding to a CPI). Note

that the resolution bins of the system provides only a coarse

view of the trajectory whereas the proposed algorithm yields

a super-resolution effect.

Long time integration accuracy of the algorithm is coupled

to the trajectory estimation performance through the EM

iterations for finding the reflection coefficients (Algorithm 1).

We compare the algorithm’s integration with that of the clair-

voyant and the conventional detector in Fig. 5. The clairvoyant

integrator sets an upper bound for the integrated sufficient

statistics, the average of which is depicted by the dashed red

line. The proposed scheme performs very close to this bound

(solid blue line rendering the average with ˘σ bounds shown

with dotted blue lines). Here, the proposed integration reaches

to 49.24 at t “ 10s, which is relatively close to 51.78 achieved

by the clairvoyant integration. The conventional scheme fails

to continue the integration after the object leaves the initial

cell under test. This integration is shown with the solid black

line in Fig. 5.

The clairvoyant CFAR detection threshold is shown with

the magenta line (averaged for the 100 experiments) in Fig. 5.

The resulting detection using the integrated sufficient statistics
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Fig. 8. Synchronised term estimation: Averaged synchronised term (solid
blue line) estimated by using the proposed estimator versus the ground truth
value (solid red line) with the bound the ˘Tp bound (dashed black lines) of
a preliminary search over the grids.

for each detector is performed by comparing its integration

against this threshold. It is clearly recognised that the proposed

scheme exceeds the CFAR threshold and enables us to decide

on the object existence hypothesis (H “ H1) at t “ 6.5s

whereas the conventional scheme stays in the region for the

noise only signal hypothesis (H “ H0).

Fig. 6 compares the proposed integration with the integra-

tion using single channels. These values are found by using the

proposed scheme with the local channel (solid green line) and

the remote channel (solid brown line), respectively, and are

averaged over 100 experiments. It is observed that all of the

integrations (i.e., the proposed integration, the local channel

integration, and the remote channel integration) increase over

time, however, both the local channel and the remote channel

integration fail to exceed the CFAR threshold by themselves.

Next, we consider the probability of detection Pd as a

function of the integration time in Fig. 7. Here, the Pd of the

proposed scheme (blue solid line) is found empirically and

is averaged over the experiments. The Pd of the clairvoyant

detector (dashed red line) sets the upper performance bound.

The Pd of the proposed scheme increases with time and

reaches Pd “ 0.89 at t “ 10s, which is relatively close to the

Pd “ 0.95 of the clairvoyant detector. The Pds of the local

channel (solid green line) and the remote channel integration

(solid brown line) stay in the vicinity of zero and fail to detect

the object in an overwhelming majority of the experiments.

Let us consider the estimation of the time shift ∆t in the

remote channel. For this purpose, we use Algorithm 2 within

Algorithm 3. Fig. 8 presents the averaged estimates (solid blue

line) with ˘σ bounds (dotted blue lines). We compare these

values with the true value of ∆t (red solid line). Also given

are the ˘Tp bounds (dashed black lines) for comparison. It is

seen that the estimation error stays within a small fraction of

the total pulse width Tp.

The benefits of the proposed scheme come with some addi-

tive cost of computations compared to conventional scheme.

The computational cost of the proposed algorithm at the

kth CPI is P pN2
X ` 2NI1NI2MpLNq2q multiplications and

P p1`2NI1NI2MpLN´1qq additions, while the conventional

detector requires M multiplications and MpLN´1q additions.

Here, P is the number of particles, NX denotes the dimen-
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sionality of the object state in (25), and, NI1 and NI1 are the

number of iterations for the EM algorithm in Algorithm 1 and

the golden selection search in Algorithm 2, respectively.

VII. CONCLUSION

In this work, we have proposed a detection algorithm that

performs the most efficient statistical test in order to detect

manoeuvring and low SNR objects with an arbitrarily long

time window of measurements. This test is carried out by

simultaneous trajectory estimation and long time integration.

Our approach can operate in mono-static, bi-static, and multi-

static configurations, and, enables us to collect the entire

evidence of object existence at the receiver by i) coherently

integrating both mono-static and bi-static channels within a

CPI, ii) performing non-coherent integration across different

channels, and, iii) continuing integration for an arbitrarily long

interval that contains many CPIs.

We have demonstrated that our approach can provide inte-

gration for an arbitrarily long interval with an effectiveness

close to the best achievable by a clairvoyant integrator. As a

result, this approach enables us to detect manoeuvring and

very low SNR objects which cannot be detected by using

conventional techniques.

APPENDIX A

LIKELIHOOD LOCALITY

Let us consider the likelihood ratio test in (18) with the

locality of the measurements Zm,kprq P EmpXkq to Xk. Let

us define the complement of E in the set of range bins, i.e.,

Ē fi t1, 2, ¨ ¨ ¨ ,ΓuzEmpXkq. It can easily be seen that

l pZm,k|Xk, αm,k,∆tm, H “ H1q “
ź

rPEm

lpZm,kprq|Xk, αm,k,∆tm, H “ H1q
ź

r1PĒm

ppZm,kpr1qq.

(60)

Similarly, the likelihood for the noise-only signal hypothesis

factorises as

l pZm,k|Xk, H “ H0q “
ź

rPEm

lpZm,kprq|H “ H0q
ź

r1PĒm

ppZm,kpr1qq, (61)

which, after substituting into (18) with (60) leads to (21).
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