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Abstract 
In this paper we specifically address the problem of de-
noising and localisation/separation of underwater acoustic 
sources. There have been a number of approaches to this 
problem. Here we evaluate a recently proposed adaptive 
sparse sequential Bayesian approach. This approach extends 
sparse reconstruction methods to sequential data. This is 
achieved by extending the classic Bayesian approach to a 
sequential Maximum  a Posterior (MAP) estimation of the 
signal over time.  A sparsity constraint is enforced through 
the use of a Laplacian like prior at each time step. An 
adaptively weighted LASSO cost function is sequentially 
minimised using the new measurement received at each time 
step. This algorithm was tested on the very challenging 
Portland03 dataset. This dataset was collected at Portland 
harbour in the UK using two linear hydrophone arrays laid on 
the sea floor. The target, a small fishing boat, then performed 
a number of transits in the harbour in various directions. This 
dataset is particularly challenging with a lot of noise from 
both natural and man-made sources. Therefore an effective 
method of de-noising and localisation is expected to 
significantly improve the results on this dataset. Our 
preliminary results show that the Bayesian sparse 
representation technique is effective in source localisation and 
denoising on this dataset.  

1  Introduction 

The problem we address here is that of using passive sonar to 
detect and track the direction of moving underwater targets, 
as can be seen in Figure 1. In passive systems one or more 
receiving sensors or hydrophones are used to record the 
ambient acoustic signal. Unlike active sonar systems there is 
no control over the strength of the received signal from the 
object we wish to track. Therefore there is a potential that a 
very high level of noise may be presented in the signal 
recorded.  
 
One early approach to estimating the direction of arrival 
(DOA) of an underwater acoustic source was using time delay 
methods. These methods exploit the different arrival time of 
the acoustic wavefront at different sensors in the array. An  
 

 
Figure 1 Underwater acoustic environment 

 
early demonstration of this method is provided by Carter [1] 
and tested using a simulated linear array and also Watkins and  
Schevill [2]. Indeed, the use of time domain techniques in the 
area is still an open area of research [3]. 
 
There have been a number of approaches to the problem of 
de-noising and separation of underwater acoustic sources 
using so called spectrum based methods. Some methods rely 
on the specific nature of the underwater acoustic environment 
such as match field (MF) methods of beamforming [4]. These 
methods combine sophisticated acoustic models and the 
ocean environment to isolate narrowband and broadband 
signals [5]. Other more general methods of source localisation 
have also been used for underwater acoustic signals. These 
include adapting the traditional MUSIC algorithm as 
proposed by Wong and Zoltowski [6] and using Basis Pursuit 
de-noising [7]. These methods perform poorly in 
environments with high levels of reverberation and noise. 
 
Here we evaluate the adaptive sparse sequential Bayesian 
approach proposed by Mecklenbruker et al [8], where a 
sequential sparse Bayesian approach is used for underwater 
source separation and tracking. We give an overview of this 
approach in the next section, which is followed by detailed 
description of the Portland03 dataset and finally we present 
experiments and results on this dataset. 

2  Method 
In the problem of estimating the DOA of underwater acoustic 
sources we have a series of Fourier transformed 
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measurements from our sensor array at each time step k, 
yk=(yk1,yk2,…ykN), where N is the number of sensors. We also 
have at each time step a vector of possible angles for the 
DOA xk=(xk1,xk2,…xkM), where M is the number of potential 
source directions. We also have a matrix A that has 
dimensions N×M where N M, the mth column of A is an 
steering vector for the sensor array corresponding to the mth 
source direction in the vector xk. This gives us the following 
linear model  
where nk is additive noise.  

yk=Axk+nk (1) 

 
Given a sequence of inputs over time from the sensor array at 
time k we have, Yk−1=(y1,…y(k−2),y(k−1)) and the current 
observation yk. We wish to find the Maximum a Posteriori 
(MAP) estimate of ̂xk , thus providing an estimate of the DOA 
for a number of sources at each time step k.  
 
The approach presented by Mecklenbruker et al [8] extends 
sparse reconstruction methods to sequential data. This is done 
by extending the classic Bayesian approach to a sequential 
MAP estimation of the signal over time. A sparsity constraint 
is enforced through the use of a Laplacian like prior at each 
time step. An adaptively weighted LASSO cost function is 
sequentially minimised using the new measurement received 
at each time step. A function φ is derived to give a source 
estimate at each time step k,  

(̂xk,λk+1)=φ(yk,λk) (2) 

Sparsity is enforced through λk=(λk1…λkM)T which is the 
Laplacian prior where M is the number of possible source 
DOAs and yk is the current sensor array output.  
 
The LASSO cost function is generalised by weighting the 
regularisation parameters. So the Laplacian prior can be 
updated based on the past history of observations. The 
weighted LASSO cost function,  [9] to be minimised is 
given by  

ζk(xk)= 
||(yk−Axk)||

2
2

σ2 +μ 
m=1

M
 wkm|xkm| (3) 

 

where σ2 is the noise variance, wk is a vector of weighting 
coefficients of length M and μ is a parameter that controls the 
level of sparsity of the estimates xk. The parameter μ and the 
adaptive weight vector wk are related through the Laplacian 
like prior given by  

λk=μwk (4) 

 
Full details of the algorithm can be found in Mecklenbruker et 
al [8] and Panahi and Viberg [9]. 

3  Dataset 
Here we present results on the Portland03 dataset. This data 
was collected at Portland harbour on the South coast of 
England in December 20031. The recordings were made with 
two parallel 32 element hydrophone arrays. The target source 
in this data set is a small fishing vessel. In the first set of 
recordings the vessel transits a number of times broadside to 
the arrays, tracks T1-T5 (Sequence 1), then in the second set 
of recordings the vessel transits end-fire to the linear arrays, 
tracks T8-T9 (Sequence 2). The engines of the vessel were 
turned off between tracks, so there are portions of the data 
where the target acoustic source is not present. Additionally 
Sequence 2 consists of only two tracks end on to the array, as 
shown in Figure 2, recording was halted some time after a 
large ocean going vessel entered the harbour, the track of this 
vessel can be seen in the data. Sequence 1 is approximately 
3300 seconds long and Sequence 2 is approximately 2400 
seconds long.  

  

  
Figure 2: Layout of the hydrophone array and tracks of the 

target vessel. 

The sensors in the arrays were placed at equally spaced 3m 
intervals on the sea floor. In practice the data from only one 
array was used as two hydrophones failed on the other array. 
On the array that was used only 31 of the sensors were used 
as the first sensor in the array failed, however the remaining 
31 sensors could be used and preserve the equal spacing 

                                                           
1 This dataset was provided by the Defence Science and Technology 
Laboratory of the UK and permission has been obtained  with respect to the 
publication of the results obtained on this dataset as presented in this paper 
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constraint of the sensors in the array. The design frequency of 
the array is 240 Hz and the data was sampled at 2604.17 Hz.  

4  Experiments and Results 
We evaluate the performance of the sequential sparse 
Bayesian algorithm proposed by Mecklenbruker et al [8] 
outlined in Section 2 on the Portland03 dataset described in 
the previous section. The original time domain data was 
transformed into the frequency domain by using a Fast 
Fourier Transform (FFT) with a window size of 128 and an 
overlap between successive windows of 25%. We only 
processed the first 2750 seconds of Sequence 1 due to time 
constraints and the fact that there is little activity in the 
sequence after this point. This produced two sequences of 
220000 and 196500 data samples for Sequence 1 and 
Sequence 2, respectively.  
 
In our first set of experiments we set the parameter μ in 
Equation 3, that controls the level of sparsity in the output 
vector,  xk, to two. This enforces the constraint that the 
maximum number of non-zero entries, i.e. possible target 
DOAs, in xk is two. This was done due to the prior knowledge 
that there should be only one acoustic source of interest in the 
data.  
 
In Figure 3 and Figure 4 we show the overall broadband 
response for Sequence 1 and 2, respectively, as the array of 
hydrophones is steered through 33 beam angles. This 
provides a reference for comparison with our source 
localisation and de-noising results. In Figure 3, we show our 
results from 125 Hz to 250 Hz for Sequence 1, it can clearly 
be seen that the DOA of the target acoustic source is 
accurately localised and tracked through most of the 
sequence. There is a stationary noise source in the data at 
approximately +40 degrees and at a number of places in the 
sequence when we track this source, however this is always 
between the tracks (at approximately 300 sec, 1000 sec, 1600 
sec and 2200 sec) when the engine of the target vessel was 
turned off. It can also be seen that the angular resolution of 
the DOA estimate is most accurate when the target source is 
directly abeam of the array in the middle of each track. 

 
In Figure 4 we show our results for Sequence 2. It can be seen 
these are far less clear than for Sequence 1. There are a 
number of possible reasons for this, tracks 8 and 9 are end-
fire to the array as shown in Figure 2, so accurately resolving 
the DOA is more challenging and also it can be seen in 
Figure 4 that the signal energy of the target source is much 
lower than in Sequence 1. At approximately 1700 seconds the 
large vessel enters the harbour and it can be seen that we 
accurately track the DOA of this source.  

 

 
(a) Broadband response from sensor array 

 
(b) Broadband beamforming results 

Figure 3: The broadband response from the array as compared 
to the broadband localisation and de-noising results for 

Sequence 1. 
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(a) Broadband response from sensor array 

 
(b) Broadband beamforming results 

Figure 4: The broadband response from the array as compared 
to the broadband localisation and de-noising results for 

Sequence 2. 

In order to investigate the performance within different 
frequency bands Figure 5 shows our results for Sequence 1 on 
three different frequency bands. Figure 5(a) shows results for 
the lower frequency band 125 Hz to 165 Hz it shows the 
tracking does not perform as well in this frequency band and 
also the stationary noise source with a DOA of +40 degrees is 
more dominant at these frequencies. It can clearly be seen in 
Figure 5(b) and Figure 5(c) that as the frequency increases the 
accuracy of the tracking improves and the effect of the 
stationary noise source is decreased.  

 

 
(a) Results in band 125 Hz to 165 Hz 

 
(b) Results in band 165 Hz to 205 Hz 

 
(c) Results in band 205 Hz to 245 Hz 

Figure 5: Beamforming results for each frequency band. 
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In a final set of experiments we look at the effect of 
decreasing the sparsity of xk by increasing the value of the 
parameter μ from two to four,  thus increasing the number of 
potential target sources to four. However, as the sparsity level 
is reduced the computational cost increases making it 
prohibitive to run on such long sequences, so only Sequence 1 
was used in this experiment. The result of increasing the 
number of potential sources is shown in Figure 6, the 
increased amount of noise in the result can clearly be seen. 
This shows the advantage of applying sparsity in the 
estimation, however some prior knowledge about the number 
of sources is required in order to select the optimal level of 
sparsity. 

 

  
Figure 6: Beamforming results for Sequence 1 with sparsity 

parameter set to four. 

5  Conclusion 
We have demonstrated that an adaptive Bayesian sparse 
representation can be used to accurately estimate and track 
the DOA of underwater acoustic sources. We have shown 
results on the real and very challenging Portland03 dataset, 
which was collected in a working harbour using a boat as a 
moving target source. The results of these experiments show 
that imposing a sparsity constraint on the DOA can greatly 
reduce the amount of unwanted noise in the final result.  
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