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Abstract: ATR (Automatic Target Recognition) for MCM (MineCounter Measure) operations
is highly dependent on resolution and image quality. The introduction of SAS (Synthetic Aper-
ture Sonar) systems, more than a decade ago, has then been a game changer in the field of
MCM. It became clear over the years however that single pass survey may not be sufficient to
reach acceptable levels of recognition and/or false alarm. The interesting problem of target
reacquisition has then emerged. For synthetic aperture systems, circular reacquisition patterns
are particularly beneficial for various reasons: (i) it offers the full 360 degrees view angles of
the target, (ii) it maximises the aperture offering the maximum theoretical resolution for the
system and (iii) it is relatively efficient in term of reacquisition time. This presentation focuses
on the resolution problem for CSAS systems. Thanks to the symmetry of the problem, we will
derive the exact CSAS PSF (Point Spread Function) at the centre of the reacquisition pattern,
then extend the exact PSF expression to the full field of view using atom wave wavelet analysis.
We will naturally derive a new definition for resolution based on the PSF energy leakage. The
PSF is not uniform for the full view area, and we will introduce two normalisation methods to
remediate this issue. Finally, we will show how to increase further the CSAS resolution and
then the image quality using pulse adapted wave atom deconvolution..
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1. THE CSAS RESOLUTION

1.1. Configuration and nomenclature

We are considering a SAS system S performing a circle C centred in the point O and with a
radius R. We define the full view area as the area where every point is seen by the SAS system
S during its full trajectory on C . Assuming that C is a circle, the full view area is then also a
circle whose radius r is function of R and the beamwidth ϕ of the system:

r = Rsin(ϕ/2) (1)

Figure 1 pictures the CSAS configuration described in this paper. The CSAS full view area is
highlighted in blue in the figure.
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Fig. 1: Circular SAS configuration: S location of the SAS system following the circular
trajectory C centred in O. The CSAS full view area is highlighted.

For the rest of the paper, we will be using the nomenclature described in Table 1 for the
central frequency, the bandwidth, the pulse length and the Gaussian window temporal length
related to the pulse. For the numerical simulations and unless otherwise specified, we will be
using the values also indicated in Table 1.

Notations Definition Values Units
c sound speed 1500 m.s−1

f0 pulse centre frequency 100 kHz
∆ f bandwidth 20 kHz
T pulse length 1 ms
σ Gaussian window temporal width 200 µs

Table 1: Nomenclature and nominal values.

1.2. The matched filter response

In this section, we compute the matched filter response of a linear frequency modulated
(LFM) signal weighted by a rectangular window and a Gaussian window. The matched filter
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response solves the range compression problem and plays an important role in the derivation
of the PSF.

Let p(t) be the pulse sent by the SAS system. We assume that p(t) is a weighted LFM
signal. Thus, we can write:

p(t) =W (t)exp
[

2iπ
(

f0 +
∆ f
2T

t
)

t
]
, (2)

where W (t) is the windowing function. We are considering two cases for W (t), a rectangular
window:

W (t) = 1[−T/2,T/2](t), (3)

and a Gaussian window:

W (t) = exp
(
− t2

2σ2

)
. (4)

The matched filter response sMF(t) of the pulse (2) is given by:

pMF(t) =
∫ +∞

−∞

p∗(t ′)p(t ′+ t) dt ′

= e2iπ
(

f0+
∆ f
2T t
)

t
∫ +∞

−∞

W (t ′)W (t ′+ t)exp
[

2iπ
∆ f
T

t ′t
]

dt ′ (5)

The exact analytic expression of the matched filter response (5) can be found for both window-
ing functions (3) and (4) as described in [1] and [2] respectively, and pMF(t) reduces to

pMF(t) = B(t) e2iπ f0t , (6)

with

B(t) = T sin[πt∆ f (1−|t|/T )]
πt∆ f for the rectangular windowing (3) and (7)

= σ
√

πexp
[
−
(

1
4σ2 +π2 ∆ f 2

T 2 σ2
)

t2
]

for the Gaussian windowing (4). (8)

For the Gaussian windowing case, B(t) can be rewritten as B(t) = σ
√

πexp
[
− c2

8a2
0
t2
]

where

a0 =
1√
2

cσT√
T 2+4π2∆ f 2σ4

represents the spatial standard deviation.

Figures 2(a) and (b) plot the matched filter response of the pulse p(t) for respectively the
rectangular windowing (3) and the Gaussian windowing (4) with the pulse parameters described
in Table 1. Note that the analytical formula (6) is exact and that there is a perfect match between
the predicted and the simulated data.

From (6), it is interesting to note that the matched filter response pMF(t) is only a low
frequency envelope, B(t), modulated by the central frequency f0. The frequency content of
pMF(t) then comes from the frequency leakage caused by the windowing function B(t).

1.3. CSAS Point Spread Function

To recover the CSAS PSF, we need to integrate the received echoes along the full circular
trajectory C . We consider an ideal scatterer located at the centre O of the circle C . Given the
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Fig. 2: Match filtered response for a pulse with (a) rectangular window and (b) Gaussian
window.

circular geometry of the problem, it is convenient to compute the PSF is the polar coordinates
where O represents the origin. Furthermore, the PSF I(r,θ) is only function of r, the distance
to the centre O, i.e. I(r,θ) = I(r). The integration along C gives the PSF, and we can write

I(r) =
∫ 2π

θ=0
B
(

2r cosθ

c

)
e4iπ f0r cosθ/c dθ. (9)

Using a first order approximation of the MacLaurin series for B(.) leads to the PSF expression
for CSAS configuration:

I(r) = 2πB
(

2r
c

)
J0(2kr) (10)

with k = 2π f0/c representing the wave number and J0(.) the Bessel function of the first kind of
order 0.
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Fig. 3: (a) Comparison between the full SAS integration from Eq. (9) and the approximation
from Eq. (10) for a pulse with a Gaussian windowing. (b) Normalised PSF for a CSAS system

using a pulse with a Gaussian window.

In figure 3(a), we plot the PSF as a function of r and compare the exact solution (9) with
the approximation given by (10). The numerical simulation has been performed using the
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numerical value given in Table 1. The close match between the two curves indicates that the
first order approximation reflects accurately the circular integration. Figure 3(b) draws the 2D
normalised CSAS PSF for a pulse with a Gaussian windowing.

2. DISCUSSION

The resolution argument plays an important role in the capability for a system to perform
recognition tasks and in particular for automated target recognition algorithms [2–5]. Few
points are worth highlighting from the results of section 1.

Resolution definition: The classic definition of resolution comes from the pulse compression
technique as developed in section 1.2. For a linear frequency modulated (LFM) pulse, the
distance resolution ∆r is often defined as the -3dB spatial width of the matched filter response
and is given by the classic formula:

∆r =
c

2∆ f
. (11)

First it is worth mentioning that the approximate formula (11) assumes a rectangular windowing
function as written in (3) and then does not take into account any variation in the pulse shape
or windowing. Eq. (11) often conjures up the -3dB spatial width as a definition. Again, this
argument is approximate, the c

2∆ f represents in reality a -2.18dB spatial width, but c
2∆ f is in

fact closer to half of the spacing between the first zeros of the sinc(.) function in (7). In [2]
we propose to redefine the resolution as a percentage of the energy leaking of the PSF (Point
Spread Function). This definition takes into account the specific pulse sent by the system and
also infers on the degree of interference that a scatterer will have on adjacent pixels. As an
example, the PSF radial energy E integrated over a radius r0 of the the PSF for a fully coherent
CSAS system given a LFM pulse with a Gaussian windowing can be written as:

E(r0) = E0 erf(a0r0) (12)

where E0 = π3/2σ2 a0
2k represents the total PSF energy. The radius r0 pixel that integrates 90%

of the PSF is then found by solving the equation: erf(a0r0) = 90%.

Effective bandwidth: Bandwidth is not a quantity well defined nor easily measured for real
system as it depends on the physical characteristics of the transducers and also the transmitted
pulse itself. It is well known that rectangular windowing, although it maximises the overall
pulse energy, creates Gibbs oscillations in the Fourier domain [6] and, as a result, strong os-
cillations in the matched filter response as seen in figure 3(a). Windowing functions, such as
Gaussian, Hamming or Tukey, smooth these oscillations and provide much cleared response in
the Fourier domain. The unfortunate consequence is a reduction in the bandwidth. We define
the effective bandwidth as the bandwidth of a rectangular windowed pulse that would provide
the same resolution of the tested transmitted pulse using the resolution definition described
by (11). A Gaussian windowed LFM pulse for example has an effective bandwidth ∆ feq of

∆ feq =
c

4
√

2ln1.65a0
. (13)

The Gaussian windowed pulse with the parameters of Table 1 for example has an effective
bandwidth of approximately 9kHz compared to the nominal 20kHz.
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Fig. 4: Matched filter response of a Gaussian windowed LFM pulse and comparison with a
rectangular windowed LFW pulse at ∆ feq.

CSAS resolution gain: As stated earlier, the principle of a CSAS strategy for target acqui-
sition is to maximise the virtual antenna aperture length. With 2π integration, full coherent
CSAS simply provides the maximum aperture possible. In essence, Eq. (10) describes the gain
in resolution of the CSAS processing compared to the matched filter response alone. The res-
olution gain factor can be found by the asymptotic expression of the Bessel function J0(.) and

writes as
√

2
2πkr . It is important to note that, contrary to the matched filter response, the CSAS

processing gain is function of the central frequency f0: as the central frequency increases, the
resolution also increases. As seen in figure 5 and for a system operating at f0 = 100kHz and
described in Table 1, the gain in resolution is approximatively 16.
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Fig. 5: CSAS processing resolution gain compared to matched filter processing alone.
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