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Abstract

The Multiple Shift Maximum Element Sequential Matrix

Diagonalisation (MSME-SMD) algorithm is a powerful but

costly method for performing approximate polynomial eigen-

value decomposition (PEVD) for space-time covariance-type

matrices encountered in e.g. broadband array processing. This

paper discusses a newly developed search method that restricts

the order growth within the MSME-SMD algorithm. In addi-

tion to enhanced control of the polynomial degree of the

paraunitary and parahermitian factors in this decomposition,

the new search method is also computationally less demanding

as fewer elements are searched compared to the original while

the excellent diagonalisation of MSME-SMD is maintained.

1. Introduction

To accurately model the delay and multipath properties of

broadband array processing systems explicit lag elements must

be used rather than the phase shifts employed in narrowband

systems. Using delays rather than phase shifts generates a

space-time covariance matrix, R[τ ], which captures both spa-

tial and temporal aspects of the signals. Taking the z-transform

of the space-time covariance matrix, R(z) •—◦ R[τ ], gener-

ates the polynomial cross-spectral density (CSD) matrix. The

structure of the CSD matrix produced can be seen as a matrix

with polynomial elements or as a polynomial that has matrices

as its coefficients. The CSD matrix, R(z), is parahermitian,

i.e. R(z) = R̃(z), where the parahermitian operation, {̃·},

consists of a complex conjugate transpose and time rever-

sal, such that R̃(z) = RH(z−1). The traditional eigenvalue

decomposition (EVD) which is used in many narrowband sig-

nal processing problems is not directly applicable to the poly-

nomial CSD matrix. The polynomial EVD (PEVD) [1] can

be seen as an extension of the EVD to the polynomial matrix

case. The PEVD can be used to factorise the parahermitian,

R(z), into

R(z) ≈ Q̃(z)D(z)Q(z) , (1)

whereQ(z) is paraunitary such that Q(z)Q̃(z) = Q̃(z)Q(z) =
I and D(z) is a diagonal polynomial matrix. Although an

exact decomposition in (1) cannot be guaranteed [1], [2] sug-

gests the approximation can be accurate for sufficiently high

orders of Q(z). Recently a wide variety of applications for

the PEVD have arisen in areas such as broadband angle of

arrival estimation [3], filter bank-based channel coding [4],

subband coding [5], and the design of broadband precoding

and equalisation of MIMO systems [6]. The polynomial sub-

space decomposition techniques, including [4,6,3], require an

accurate PEVD with low order paraunitary matrices to reduce

the computational cost of the application. The decomposition

in (1) can be calculated through a variety of different PEVD

algorithms [1,7–10]. Since the PEVD is only unique to within

multiplication by all-pass filters each algorithm may produce

a different decomposition and each has its own merits. This

paper considers the recently developed sequential matrix diag-

onalisation (SMD) family of algorithms [8,9]. Compared to

other PEVD algorithms, such as the SBR2 algorithm, [1] the

SMD methods produce decompositions exhibiting a greater

degree of diagonalisation (thus greater accuracy) but are more

computationally costly to implement. The original SMD algo-

rithm [8] has been shown to give good results and the lowest

order paraunitary matrices. The results of the multiple shift

maximum element (MSME) SMD [9] are better in terms of

convergence however the multiple shifts cause the order of

the paraunitary matrices to grow faster. The aim of this paper

is to restrict the order growth seen in MSME-SMD whilst

maintaining a similar level of diagonalisation performance. A

further benefit is that computational cost is also reduced due

to less data being processed. Sec. 2. reviews the current state-

of-the-art sequential matrix diagonalisation algorithms. Sec. 3.

analyses the worst case polynomial order growth for the SMD

and MSME-SMD algorithms. Sec. 4. then highlights the ben-

efits of the restricted search in the MSME-SMD algorithm.

Simulation results are presented in Sec. 5. to compare the

different PEVD methods and conclusions are given in Sec. 6.

2. PEVD Algorithms based on Sequential Matrix Diago-

nalisation

This section first gives an overview of the main steps involved

in the SMD family of PEVD algorithms before exploring the
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SMD and MSME-SMD algorithms in detail.

The SMD family of algorithms has an initialisation step

where all off-diagonal energy of the zero lag is transferred

onto the diagonal via an EVD,

S(0)[0] = Q(0)R[0]Q(0)H . (2)

The modal matrix Q(0)(z) is then applied to all lags in the

parahermitian matrix,

S(0)(z) = Q(0)R(z)Q(0)H . (3)

At each iteration a generic PEVD algorithm consists of three

main steps, first a search is carried out to determine which

row(s) and column(s) are to be brought onto the zero lag. This

search step is algorithm dependent and will be discussed in

more detail below. Next the selected row(s) and column(s) are

shifted onto the zero lag by means of a paraunitary shift oper-

ation,

S(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃
(i)
(z) , i = 1 . . . I . (4)

Each PEVD iteration is then completed by bringing the off-

diagonal energy at lag zero onto the diagonal, which is done

by calculating and applying the modal matrix for the EVD of

the zero lag to all lags of the parahermitian matrix,

S(i)(z) = Q(i)S(i)′(z)Q(i)H . (5)

All SMD algorithms stop when either a set number of itera-

tions, I , have been carried out or the search step returns a value

which is below a predefined threshold. Upon completion the

approximately diagonal parahermitian matrix is S(I)(z), and

the product of the individual delay and EVD operations is used

to construct the paraunitary matrix for the decomposition i.e.

Q(I)(z) = G(I)(z) . . .G(1)(z)G(0)(z) , (6)

where the unitary matrices, G(i)(z), are constructed from the

delay and EVD operations from each of the I steps,

G(i)(z) = Q(i)Λ(i)(z) . (7)

2.1 Sequential Matrix Diagonalisation

To determine which elements are brought onto the zero lag the

original SMD algorithm uses a search based on column norms

within the parahermitian matrix

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , i = 1 . . . I , (8)

where ŝ
(i−1)
k [τ ] is a modified column vector which contains

all elements excluding the on-diagonal entry. Once the column

with the largest norm is found it is brought onto the zero lag

using the delay matrix

Λ(i)(z) = diag{1 . . . 1︸ ︷︷ ︸
k(i)−1

z−τ (i)

1 . . . 1︸ ︷︷ ︸
M−k(i)

} (9)

where the parameters k(i) and τ (i) are the column and lag

indices obtained in (8).
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Figure 1. View of a 5 × 5 parahermitian matrix during the ith iteration,

not showing the lag dimension: starting from the top 2× 2 matrix containing

the maximum off-diagonal element in (a), (b) shows an example of an ele-

ment resistant to permutations, the third and fourth stages of the set of reduced

search space strategy are shown in (b) and (d).

2.2 Multiple Shift Maximum Element SMD

For the multiple shift maximum element search, step (8) is

modified to use the l∞ rather than the l2 norm,

{k(i), τ
(i)

k(i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , i = 1 . . . I , (10)

where the symbols have the same meanings as (8). The maxi-

mum element search is carried out a total ofM−1 times during

each iteration in an attempt to maximise the amount of energy

brought onto the zero lag

The parahermitian symmetry limits the maximum number of

elements that can be moved onto the zero lag without affecting

previous choices to M − 1. Even then some choices result in

fewer elements being able to be moved. To ensure that the full

quota of M − 1 maximum elements are transferred onto the

zero lag and that the shifts do not adversely affect one another,

a set of reduced search spaces is required [9]. The masks used

to reduce the search spaces are shown in Fig. 1 for the case

where M = 5.

Prior to Fig. 1 (a) the first, global, maximum element is

found (without any restrictions) and permuted into the top left

2× 2 sub-matrix. Any element found in the search space iden-

tified in Fig. 1 (a) can be brought onto the zero lag and per-

muted into the top left 3 × 3 sub-matrix with out affecting the

initial global maximum. If the second element was found in

the position of element b in Fig. 1 (b) it would not be possi-

ble to permute it into the upper left 3 × 3 sub-matrix. As a

result we would have to proceed to Fig. 1 (d) meaning a total

of only 3 elements could be found. Using the MSME-SMD

search method, following the search space in Fig. 1 (a) and a

permutation to bring a second element (from the search space

in Fig. 1 (a)) into the upper left 3 × 3 sub-matrix, Fig.1 (c)

is obtained. The search, shift and permute process is repeated

using the mask in Fig. 1 (c), however this time element b from

Fig. 1 (b) could be chosen. Finally the fourth or (M − 1)-th
element is found using the mask in Fig. 1 (d).

In practice the permutations mentioned above are not strictly
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required, they are only used here to help illustrate the search

and mask process, without permutations the search spaces sim-

ply become split up and are in different locations from Fig. 1.

After the (M − 1) maximum elements have been located they

are then transferred onto the zero lag using the delay matrix

Λ(i)(z) = diag
{
z−τ

(i)
1 z−τ

(i)
2 . . . z−τ

(i)
M

}
. (11)

3. Polynomial Order Growth

This section analyses the worst case polynomial order growth

for both the SMD and MSME-SMD algorithms. It is likely that

the actual polynomial matrix growth will be less than the worst

case at each iteration. The analysis below assumes we have a

parahermitian matrix, S(i)(z), at the i-th iteration with a size

of M ×M × 2L+ 1, i.e. the maximum lag in either direction

is |L|.

The growth in order of the parahermitian, S(i)(z), and

paraunitary,Q(i)(z), matrices is determined by the order of the

shift matrix, Λ(i)(z). To help analyse the problem we define

the largest possible shift as Δmax and the highest possible

order for the shift matrix Λmax.

In the case of the SMD algorithm the growth is simply deter-

mined by the magnitude of τ (i) found in (8) which can have a

maximum value of L, therefore Δmax = L. With Δmax = L
the maximum SMD shift matrix length, Λmax = L. When

Λ(i)(z) of order Λmax is applied to S(i)(z) and Q(i)(z) their

order will increase by 2Λmax or in this case 2L. The parame-

ter Λmax is doubled because it is used to advance/delay a col-

umn and delay/advance a row onto the zero lag which grows

the polynomial order in both directions.

For the MSME-SMD algorithm each of the (M − 1) shifts

can potentially interact such that the maximum shift length,

Δmax is �((M − 1)L)/2�. The multiple shift algorithm can

both delay and advance elements onto the zerolag in a sin-

gle iteration using Λ(i)(z) therefore the maximum shift matrix

order,Λmax, is 2�((M−1)L)/2�. As with SMD, whenΛ(i)(z)
of order Λmax is applied to the polynomial matrices their order

will increase by 2Λmax. For the MSME-SMD algorithm the

worst case polynomial order growth is 4�((M−1)L)/2�. Even

with reasonably small values of M the multiple shift algorithm

can result in a significant increase in the worst case polynomial

order growth.

The growth in polynomial order can be curtailed using

appropriate parahermitian [11] and paraunitary [12,13] trim

functions. Both methods are permitted to remove up to a pre-

defined threshold of energy, μ, from the outer lags of the poly-

nomial matrices. For a parahermitian matrix the trim is done

symmetrically taking advantage of its parahermitian nature.

The parahermitian property is also preserved by the trim func-

tion. In the case of paraunitary matrices the trim function is

applied to both sides of Q(z) asymmetrically because the

outer lags of a paraunitary matrix will have different energies.

The paraunitary property is replaced by near-paraunitarity

after the trim function is applied but the extent of this can be

minimised by using the row-shift corrected trim from [13].

Table 1. Summary of worst case polynomial order growth for the different

SMD variants .

SMD MSME RS-MSME

Δmax L �((M − 1)L)/2� L
Λmax L 2�((M − 1)L)/2� 2L
Ord. Growth 2L 4�((M − 1)L)/2� 4L

To reduce computational costs of the PEVD algorithms the

parahermitian truncation can be carried out at the end of every

iteration, the resulting maximum total loss in energy after I
iterations is I × μPH . As the paraunitary matrix is only ever

calculated when the PEVD is complete the trim function is

only applied once and so the resulting energy loss has a maxi-

mum of μPU .

4. Restricted Search MSME-SMD

In the restricted search (RS) MSME-SMD we impose an extra

condition on the search spaces in Fig. 1 to control the polyno-

mial order growth in S(i)(z) andQ(i)(z). Rather than allowing

every search to select elements from any lag, we restrict it to

elements closer to the zero lag than the global maximum, found

during the first search of each iteration. The new approach still

uses (10) but now once the first search of the i-th iteration finds

a maximum element on τ
(i)

k(i) , the lag parameter, τ , in (10) is

restricted such that |τ | ≤ |τ
(i)

k(i) | for the remaining searches in

the i-th iteration. Using this method the worst case maximum

shift, Δmax, is L, the maximum order for the shift matrix,

Λmax, is 2L and the polynomial order growth is 4L. For com-

parison the maximum shift, shift matrix order and polynomial

order growth are summarised in Tab. 1 for all three SMD vari-

ants. The worst case scenario sees the RS-MSME-SMD order

grow twice as fast as SMD but this is significantly lower than

the original MSME-SMD, especially when the matrix width

M is increased.

Ultimately limiting the search space to lower lags will

result in missing some elements and slow the algorithm’s con-

vergence slightly but these missed elements are likely to be

found by searches during future iterations. The reduced search

space will benefit the real time performance in two ways;

first the searches during one iteration where the restriction,

|τ | ≤ |τ
(i)

k(i) |, is applied will be on fewer elements and second

the slower growth in parahermitian matrix means searches

and matrix operations in future iterations will be over fewer

elements.

5. Results

To illustrate the performance of the different PEVD algorithms

we first present the performance metrics, followed by the sim-

ulation set up. Finally the results are presented and the perfor-

mance of the PEVD algorithms is analysed.

5.1 Performance Metrics

To confirm that the RS-MSME-SMD shifts a similar amount of

energy at each iteration as the original MSME-SMD, the first
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test will measure diagonalisation performance: the remaining

off-diagonal energy after i iterations normalised by the energy

in the initial parahermitian matrix, R[τ ],

E(i)
norm =

∑
τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22∑

τ ‖R[τ ]‖2F
, (12)

where ‖ · ‖F represents the Frobenius norm and the vector,

ŝ
(i)
k [τ ], in the numerator is the same as that used in (8) which

contains all but the on diagonal elements.

The main objective of the search space restriction discussed

in this paper is to limit the order growth in the polynomial

matrix. With this in mind the order of the parahermitian and

paraunitary matrices are recorded after each iteration.

An added benefit of the reduction in parahermitian matrix

order is a reduction in the computational cost of calculating the

PEVD. Here we use execution time as a measure of the com-

putational complexity of the PEVD algorithms implemented in

Matlab 2014a with the following system specification: Ubuntu

14.04 on a workstation with Intel R© Xeon R© E5-1607V2 3.00

GHz x 4 cores and 8 GB RAM.

5.2 Simulation Set Up

The results were obtained using an ensemble of 103 paraher-

mitian matrices produced using the source model from [14]

where the source model is not majorised and has an average

dynamic range of approximately 30 dB. The source model is

randomised so that the parahermitian matrices produced are

unique for each instantiation. The parahermitian matrix, R(z),
is R(z) ∈ C6×6 with the initial number of lags set to 119.

Each of the PEVD algorithms was run for 200 iterations with

the performance metrics recorded after each iteration. The sim-

ulations are first run using μPH = μPU = 0, i.e. only remov-

ing zero filled lags, then repeated over the same ensemble for

μPH = μPU = 10−6.

5.3 Algorithm Convergence

Fig. 2 shows the reduction in off-diagonal energy vs. algo-

rithm iterations for the SMD algorithm and the two versions of

MSME-SMD. Despite the reduced search space we can see for

the example in Fig. 2 both MSME-SMD algorithms transfer a

similar amount of energy at each iteration and follow an almost

identical convergence curve. The amount of energy transferred

by both MSME-SMD algorithms is also significantly higher

than the SMD method.

As discussed in Sec. 4. the original MSME-SMD transfers

marginally more energy per iteration than the new RS-MSME-

SMD algorithm in Fig. 2 however these are still significantly

better than convergence of the SMD approach.

5.4 Paraunitary/Parahermitian Matrix Order

This section investigates one of the main goals of the RS-

MSME-SMD algorithm which is to reduce the growth in poly-

nomial order of the parahermitian and paraunitary matrices.
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Figure 2. Diagonalisation vs. algorithm iterations for the SMD algorithm

and the two MSME-SMD varients.
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Figure 3. Reduction in off-diagonal energy vs. growth in parahermitian

matrix order.

Figs. 3 & 4 show the order growth of the parahermitian

and paraunitary matrices for each of the selected PEVD algo-

rithms. Generally the SMD method produces parahermitian

and paraunitary matrices of lower order than any of the other

PEVD methods [10]. Here we can see in both Fig. 3 & 4 that

the matrices produced by RS-MSME-SMD are significantly

shorter than their MSME-SMD equivalent and are a similar

level to SMD. Even when a truncation algorithm such as those

described in [11] and [13] are applied to the parahermitian

and paraunitary matrices the reduced search method still out-

performs the original MSME-SMD as shown in Fig. 3 & 4

although it does lose out slightly to SMD.

5.5 Real Time Execution

Fig. 5 shows the time taken for each of these algorithms to

carry out 200 iterations alongside the diagonalisation measure

at each point. Despite their more complex search methods the

MSME-SMD algorithms actually converge faster in real time

than the SMD approach in all cases. When no truncation is

used we can see that the new reduced search MSME method
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Figure 4. Reduction in off-diagonal energy vs. growth in paraunitary matrix

order.
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Figure 5. real time convergence of PEVD algorithms, diagonalisation mea-

sure vs. mean execution time.

is more efficient than the original MSME search, in fact the

new method takes on average around 10 seconds less than its

predecessor to complete 200 iterations. When the parahermi-

tain truncation methods are included both MSME-SMD vari-

ants obtain a significant performance improvement, whereas

the same change in SMD has a lesser effect. The performance

benefits of the reduced search MSME-SMD are not as obvious

when the parahermitian truncation is used but it still performs

better than the original MSME-SMD.

6. Conclusion

Through analysis of the polynomial order growth of the SMD

and MSME-SMD algorithms we have proposed a new search

method which can significantly reduce the polynomial order

growth of the MSME-SMD algorithm. Results indicate almost

no degradation in energy transfer between the existing and pro-

posed method. In addition the experiments have shown that

the new method leads to a significant reduction in polynomial

matrix order growth even when truncation methods are used.

The reduced search spaces and resulting lower order paraher-

mitian matrices also result in an improved real time conver-

gence. When the parahermitian and paraunitary matrices are

truncated the benefits of the new search method are reduced.

In general the restriction of the search space slows the growth

of both paraunitary and parahermitian matrices which leads to

a faster execution time with minimal impact on the algorithm

convergence.
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