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Abstract—The Probability Hypothesis Density (PHD) filter has
brought significant advances in multi-object estimation since
it not only estimates the spatial distribution of a population
of objects but also provides estimates about the actual object
number which is unknown in many scenarios. However, strict
assumptions have to be made for the framework to be practical,
in particular through the choice of the distribution for target
and false alarm numbers. The exponential form of the Poisson
distribution, for example, offers great simplicity in the derivation
of the filter, but in many applications, this assumption is very
restrictive, e.g. when there is a lot of variability in the number of
measurements. This paper introduces a variation of the original
PHD filter which assumes a negative binomial distribution for
the false alarm number. It will be demonstrated that the altered
formulation of the filter simply leads to an additional factor
in the update equation and that the original PHD filter is a
special case of the proposed method. A Gaussian Mixture (GM)
implementation of both filters is used to test and compare their
performance on simulated data.

I. INTRODUCTION

Multi-object estimation has become of increasing impor-
tance in a large variety of applications, ranging from maritime
or aerial surveillance to space situational awareness and even
biomedicine. The quality and quantity of the data that is
recorded over time varies greatly depending on the nature
of the sensor design and the monitored scene, and it is
almost impossible to avoid the occurrence of clutter. Therefore,
clutter compensation techniques have to be found in order to
accommodate the different sensor modalities and to improve
the estimation results.

Some clutter can be highly dynamic with a large variation in
the number of clutter points. In the case of radar surveillance
on the open sea for instance, various types of false alarms
are recorded which are known as sea clutter. Some reflections
on the sea water might give more or less static interferences,
but especially the crests of waves in rough sea conditions can
lead to spontaneous outbursts of false alarms, called burst scat-
tering [1]. A similar phenomenon can be observed in super-
resolution fluorescence microscopy which is subject to severe
intensity changes due to repeated excitation illumination with
a laser beam [2], [3].

In Probability Hypothesis Density (PHD) filtering which
was introduced by Mahler in 2003 [4], the number of false
alarms is usually assumed to be Poisson distributed which
is a reasonable constraint for scenarios with a moderately
varying number of clutter points in the acquired data. However,
one important property of the Poisson distribution is that its
variance and mean are equal, and in some scenarios like

described above, the restriction on the variance of the Poisson
distribution might lead to a poor description of the actual
clutter behaviour that might show a very high variance in
the false alarm occurrence. Previous works suggested methods
to estimate the clutter intensity and its cardinality statistics
[5]–[7], where the number of clutter points is either Poisson
or binomial distributed, however both of those distributions
assume that the variance is less than or equal to the mean.

In this paper, a variation of the original PHD filter is pre-
sented which assumes a Negative Binomial (NB) distribution
of the clutter number, allowing a large variance in the occur-
rence of clutter points. In Sec. II, basic notions on finite set
statistics are given to facilitate the formulation of the different
models for possible target populations and the new filtering
method, given in Sec. III. A Gaussian-Mixture implementation
of both filters is used to give a performance comparison in
Sec. IV before the article concludes. An appendix delivers
additional formulae that are used in the proof of the filter.

II. POINT PROCESSES AND PROBABILITY GENERATING
FUNCTIONALS

The PHD filter stems from Finite Set Statistics (FISST)
which is extensively treated in [8]. Some basic concepts will
be stated in the following since they are important for the
derivation of the new filter.

Point processes are random objects describing a random
number of points in a given state space X , usually Rd. They
are useful for scenarios where both the object number and their
spatio-temporal behaviour are unknown since both aspects are
modelled together. Just like for other random objects, the
probability density pΦ of a point process Φ is represented
by its Probability Generating Functional (PGFL) as an infinite
sum of the form

GΦ(h) =
∑
n≥0

∫
Xn

[
n∏
i=1

h(xi)

]
pΦ(x1:n)d(x1:n) (1)

where x1:n = (x1, . . . , xn) ∈ Xn. This notation is important
for the modelling of such processes since it expresses both
a variation over all possible numbers of objects in a target
space X and the actual target states themselves. Furthermore,
it gives back the first-order moment density (or intensity, or
Probability Hypothesis Density) µΦ(x) and the probability
density pΦ(x1, . . . , xn) for each cardinality n immediately via

µΦ(x) = δGΦ(h; δx)|h=1, (2)

pΦ(x1, . . . , xn) =
1

n!
δnGΦ(h; δx1

, . . . , δxn
)
∣∣∣
h=0

(3)
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where δxi
, i ∈ {1, . . . , n} are Dirac delta functions and δG

denotes the differentiation operator applied on a functional G.
Different ways have been described in the past to differen-

tiate a functional G(.), for example the Fréchet and Gâteaux
differentials. However, the choice of this article is the so called
chain differential since it allows the description of a chain rule
[9]–[11]. This has been adopted in FISST [12], [13] since the
original four chain rules were insufficiently general [8, p. 390-
1].

Given a functional G and two functions h, η : X → R+,
the (chain) differential of G with respect to (w.r.t.) h in the
direction of η is defined as

δG(h; η) = lim
n→∞

G(h+ εnηn)−G(h)

εn
, (4)

where (εn)n∈N is a series of real numbers converging to 0 and
(ηn : X → R+)n∈N is a series of functions which converge
pointwise to η.

Just like the differential for ordinary functions, the chain
differential is linear in its functional argument. Furthermore,
it yields similar differentiation rules

δ(F ·G)(h; η) = δF (h; η)G(h) + F (h)δG(h; η) (5)

and
δ(F ◦G)(h; η) = δF (G(h); δG(h; η)) (6)

which are also called the product rule and chain rule, respec-
tively. In case of the chain rule, however, note the nested struc-
ture in contrast to the multiplicative structure in the ordinary
chain rule for functions. Both rules can be generalised to the
nth-order derivatives for functional products and compositions
as follows:

δn(F ·G)(h; η1, . . . , ηn)

=
∑

ω⊆{1,...,n}

δ|ω|F
(
h; (ηi)i∈ω

)
δn−|ω|G

(
h; (ηj)j∈ω̄

)
,

(7)

where ω̄ = {1, . . . , n} \ ω is the complement of ω, and

δn(F ◦G)(h; η1, . . . , ηn)

=
∑
π∈Πn

δ|π|F

(
G(h);

(
δ|ω|G(h′; (ηi)i∈ω)

)
ω∈π

)
,

(8)

where Πn is the set of partitions of the index set {1, . . . , n}.
Eq. (8) is also known as Faà di Bruno’s formula for chain
differentials [9], [10].

III. THE PHD FILTER WITH NEGATIVE BINOMIAL
CLUTTER MODEL

In this section, the proposed filter will be presented. It
branches from the classical PHD formulation in the modelling
phase already, so it is crucial to state first the different models
that will be used.

A. Three fundamental point processes

A suitable model is essential for the performance of a filter
since prior knowledge about the behaviour of the targets can
help to enhance the interpretation of the observations. For that
purpose, let us first define three basic distributions and their
PGFLs, namely the Bernoulli, Poisson and Negative Binomial
distributions. These will be crucial in the formulation of the
new filter introduced in Sec. III-B.

1) Bernoulli point processes: A Bernoulli point process has
only two possible outcomes: either there is an object with
spatial distribution s or there is no object, where both
events occur with the probabilities p and (1− p), respec-
tively. In this case, the general PGFL in (1) simplifies to
the following expression:

GBernoulli(h) = (1− p) + p

∫
X
h(x)s(x)dx. (9)

In multi-target tracking, two different examples of such
processes are found, namely the target survival and the
target detection processes.

2) Poisson point processes: Poisson point processes de-
scribe populations of random objects whose cardinality
is Poisson distributed. The objects are assumed to be
independent and identically distributed (i.i.d.) according
to some spatial distribution s and their number is Poisson
distributed with parameter λ. The PGFL of the Poisson
process is easily derived to be of the form

GPoisson(h) = exp

(∫
X

[h(x)− 1]µ(x)dx

)
(10)

where µ(x) = λs(x) is the intensity of the process.
In the FISST framework, it is common to model the
number of objects appearing in the Field of View (FoV)
during one time step with a Poisson point process.
The functional (10) has very convenient properties w.r.t.
differentiation due to its exponential form. Furthermore,
it has the important property that its mean and variance
are equal.

3) Negative Binomial point processes: NB point processes
describe populations of random objects whose cardinality
is NB distributed. The objects are again i.i.d. according to
some spatial distribution s. The PGFL of a NB process is
derived from a Poisson process with Gamma distributed
mean, resulting in the formulation

GNB(h) =

(
1 +

1

β

∫
X

[1− h(x)]s(x)dx

)−α
(11)

with strictly positive real values α, β ∈ R+ [14]. In
contrast to Poisson point processes, the variance of this
process is always greater than the mean, however different
ratios of the latter can be obtained using appropriate
choices of α and β.

Note that the parameters of the NB distribution stand
in correspondence with the mean and the variance via the



following equations which can be derived straightforwardly
from the PGFL (11):

µ(B) =
α

β

∫
B

s(x)dx,

var(B) = µ(B)

(
1 +

1

β

∫
B

s(x)dx

)
.

(12)

Furthermore, there is a close relationship between the Poisson
and NB distributions; in fact, one can show that the Poisson
distribution is the limiting case of a NB distribution [15]. This
suggests experimentation with negative binomial assumptions
in the modelling in order to lift the restrictiveness of the
Poisson case. The fact that the variance of a NB point process
is always greater than (or in the Poisson limit case, equal to)
its mean might be beneficial for cases with highly fluctuating
object number because different ratios of mean to variance can
be studied.

B. Derivation of the PHD filter with NB clutter model

The PHD filter is a Bayesian recursion for multi-target state
estimation which involves two stages of operation, a prediction
and an update step. The prediction gives an estimate of the
target state at a given time based on prior knowledge, whereas
the update corrects this belief by incorporating additional
information that might be given through sensor input. The
PHD filter got its name from the fact that instead of the whole
distribution, the first order moment is propagated which is also
called the intensity or probability hypothesis density of the
process.

Since false alarms only affect the update phase of the
filtering framework, the prediction phase is the same as
for the classical PHD filter [4]. In this paper, however, a
measurement-driven birth model is considered for the practical
implementation, resulting in a shortened prediction equation
without spontaneous appearance of new targets [16].

The PHD update, on the other hand, is modelled based on
the following assumptions:

Assumptions III.1. .
(a) New observations are made independently.
(b) The predicted point process Φ is Poisson with intensity

µΦ(x) = λΦsΦ(x) where λΦ is the defining parameter
and sΦ the spatial distribution of the process.

(c) The detection process is Bernoulli distributed, i.e. an
object x is detected with probability pd(x) producing a
measurement z with likelihood l(z|x), whereas x remains
undetected with probability (1− pd(x)).

(d) The birth process is assumed to be Poisson of the form
(10) with intensity µb(x) = λbsb(x), where λb is the
defining parameter and sb the spatial distribution of the
process which is dependent on the measurements.

(e) The clutter process is a Negative Binomial distributed
point process with spatial distribution sc and positive
parameters α, β ∈ R+.

These assumptions lead to the main result of this article, the
update equation of the PHD filter with NB clutter model. For

that, let us define the Pochhammer symbol or falling factorial
[17] of x by n with

(x)n = x(x− 1) · · · (x− n+ 1), (x)0 = 1. (13)

Theorem III.2. Let Z be a set of measurements provided by
a sensor at a given time, and let Ξ denote the measurement
process. Under the assumptions III.1 listed above, the updated
first-order moment density with Poisson prediction and nega-
tive binomial false alarm model is found to be

µΦ|Ξ(x|Z) = µφΦ(x) +
∑
z∈Z

µzΦ(x)

sc(z)

Y (Z\{z})
Y (Z) (14)

with missed detection term

µφΦ(x) = (1− pd(x))µΦ(x) (15)

and association term

µzΦ(x) = pd(x)l(z|x)µΦ(x). (16)

For a given measurement set Z of cardinality |Z|, the terms
Y (Z) are defined as

Y (Z) =

|Z|∑
k=0

(α+ k − 1)k

(β + 1)
k

e|Z|−k(Z) (17)

with

ek(Z) =
∑
Z̄⊆Z
|Z̄|=k

∏
z∈Z̄

∫
X µ

z
Φ(x)dx+ µb(z)

sc(z)
. (18)

Proof sketch. The proof of Thm. III.2 follows the methodol-
ogy of [4] for the derivation of the PHD filter. It will can
divided in three fundamental steps that are obtained using in
the Lemmas VI.5, VI.6 and VI.7 in the appendix.

1) First of all, the joint PGFL GΞ,Φ of the target and mea-
surement processes Φ and Ξ has to be stated explicitly
using the modelling assumptions III.1.

2) With the help of this, the conditional PGFL GΦ|Ξ has to
be derived using Bayes rule which leads to the formula-
tion

GΦ|Ξ(h|Zm) =
δmGΞ,Φ(g, h; δz1 , . . . , δzm)|g=0

δmGΞ,Φ(g, 1; δz1 , . . . , δzm)|g=0
(19)

where Zm = {z1, . . . , zm} is a measurement set of
cardinality m consisting of the observations zi [4].

3) Lastly, the first-order moment of (19) will be calculated
which gives the final result.

As mentioned earlier, the Poisson distribution can be ex-
pressed as a special case of the NB distribution [15]. Although
the variance of NB processes is always strictly greater than
the mean, the Poisson limit case leads to a ratio of 1:1. In
other words, the parametrisation of NB processes can simulate
all possible ratios between mean and variance given that
the variance is not smaller than the mean. Let us state the
following corollary of Thm. III.2.

Corollary III.3. Under the assumptions III.1, let the ratio
µc = α

β be an arbitrary but fixed number. Then, by taking the
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Fig. 1: The NB and the Poisson distributions in comparison.
Note that high variance of the NB distribution allows for rela-
tively high probabilities over a large range whereas the Poisson
distribution is concentrated around its respective mean.

limit α→∞, Eq. (14) reduces to the update equation of the
original PHD filter.

Proof. Cf. VI-C.

IV. EXPERIMENTS

Two different experiments were conducted to analyse the
behaviour of the new filter in the presence of a highly
fluctuating number of false alarms. For all experiments with
the NB based filter, the mean false alarm number is assumed
to be 9.5, and the chosen values for the NB distribution are
set accordingly to be α = 0.5 and β = 0.0526, leading to a
variance of 190.0. The original PHD filter was first run with
the same mean number of false alarm, i.e. 9.5, and then with
a larger value of 50 accounting for the high variability in the
number of false alarms.

The corresponding distributions are shown in Fig. 1.

A. Simulation of data

The FoV was assumed to be a square image frame of
size 50 m × 50 m. Between 0 and 5 targets were initialised
independently and identically distributed over the FoV. The
survival probability was set to 0.99 and the initial velocity of
the targets was normally distributed with mean 0 m and stan-
dard deviation 0.5 m in both image dimensions. Across 100
time steps, the existing targets were propagated using a nearly
constant velocity model, assuming small white acceleration
noise with standard deviation 0.01 m/s2 on each dimension.
Additional white noise on the target states with a standard de-
viation of 0.5 m simulated measurement noise. In each frame,
a Poisson distributed number of new-born targets (with mean
0.5) was initiated randomly in the FoV. The detection process
was simulated by occasionally discarding measurements, using
a detection probability of 0.9. Furthermore, the following two
alternatives for the clutter model were simulated:
S.1 The first scenario is created using exactly 9 false alarms

in each time step until time step 15 where the number of
false alarms suddenly changes to different values ranging

from 0 to 130. This scenario examines the change in
the estimated number of targets of both filters under the
influence of various amounts of clutter.

S.2 The second scenario was created using a NB distribution
for the false alarm number with the parameters as listed
above, simulating 100 time steps for each run. This
scenario helps to compare the overall behaviour of the
new filter in comparison to the original PHD filter in
presence of a highly fluctuating number of false alarms.

B. Estimation results

For all experiments, a Gaussian Mixture (GM) implemen-
tation was chosen for both methods in the manner of [18].
Furthermore, the parametrisation was chosen equally for both
PHD versions to make them comparable.

For the underlying Kalman filtering, the dynamics noise for
the prediction was set to 0.1 m and the standard deviation
of the measurement noise was set to 0.4 m. The survival
and detection probabilities were set to the true values, and
the mean number µb of newborn targets per time step was
chosen to be 10 in the initial step and 3 afterwards. Both PHD
iterations contained a merging and a pruning step, where two
components were merged with a Hellinger distance below 0.8
and a component was discarded with a weight below 10−7.

Furthermore, the parametrisation of the clutter model was
used as stated above, where the proposed method assumed
a clutter intensity of 9.5 clutter points at all times whereas
the PHD with Poisson clutter model was tested with the two
different intensities 9.5 and 50 false alarms, respectively.

The two algorithms differ only in the modelling of the
number of false alarms and not in their spatial distribution, thus
it can be expected that they yield similar performances w.r.t.
the estimation of the target states whereas they differ greatly
in the estimation of the expected target number. Therefore, the
conducted experiments are analysed based on the cardinality
error obtained through the comparison of the estimation results
with the ground truth.

Fig. 2 shows the cardinality errors of scenario S.1 in the
time step where the clutter number changes, plotted against
the true number of clutter points at that time. The presented
results are averaged over 100 Monte Carlo runs per final false
alarm number; the graphs indicate both the mean cardinality
error and the corresponding variance.

Regarding the reactivity on the amount of clutter, it can
be noticed that the original PHD filter performs slightly
better than the proposed method for clutter values in a sigma
range around the respective assumed Poisson clutter intensity
where the NB distribution is much lower (cf. Fig. 1). For
values outside that range, however, the NB based algorithm
outperforms the original method thanks to its large variance,
especially for numbers of clutter points that are far away from
the intensity expected by the Poisson distribution.

In order to analyse the performance the proposed method on
a more realistic scenario, the algorithms were further applied
to 500 randomly generated instances of scenario S.2. Fig. 3
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Fig. 2: Simulation 2: Estimation error of both algorithms at
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Fig. 3: Mean and standard deviation over 500 Monte Carlo
runs of the cardinality errors obtained with both algorithms.

shows the mean cardinality error over time together with the
variance over all runs.

For both assumed intensities, the original PHD filter pro-
duces higher average cardinality errors than the NB based
filter, and an increased intensity actually penalises the overall
performance since low numbers of clutter points are not
modelled well in that case. Furthermore, its performance varies
greatly across the runs for a modelled mean false alarm
number of 9.5, and it has a more stable behaviour for a value
of 50, even though the false alarms are generated with a NB
distribution with mean 9.5. In contrast, the proposed filter
demonstrates its robustness to high variations in the false alarm
number since the Poisson assumption is insufficient to model
the variability in the data.

Finally, the increase of complexity induced by the proposed
method was analysed by comparing the runtime of both
algorithms. All experiments were conducted on a dual-core
Dell Precision M4800 workstation with Intel(R) Core(TM)
i7-4710MQ CPU @ 2.50GHz using a Matlab implementation.
For one run of S.2, the proposed filter takes 8.02959 s averaged
over 100 runs, whereas the original PHD filter needs 6.7237 s.

This slight increase appears reasonable for scenarios that
benefit greatly from an improved clutter model. Note that the
combinatorial summation in (18) can be easily computed using
Vieta’s theorem, avoiding heavy computational cost [19].

V. CONCLUSION

A new version of the PHD filter is introduced and derived in
this article which assumes a negative binomial distribution of
the false alarm number. The algorithm leads to an additional
factor in the original formulation of the filter which makes it
easy to realise on top of an existing implementation. Further-
more, the algorithm is tested on two different sets of simulated
data that examine its reactivity to one particular measurement
spike of various heights, as well as its general performance
on a scenario with Negative Binomial distributed clutter. In
both cases, the results of the proposed method were contrasted
against the performance of the original PHD filter with two
different clutter intensities. The experiments demonstrate that
the alternative PHD version provides a much more stable
estimation of the true target number than the original filter
in the presence of spontaneous bursts of clutter. It is further
proved that the proposed formulation converges to the original
Poisson case by adjusting the parameters, so it is possible
to customise the filter through its parametrisation in order
to choose how much credibility will be given to incoming
measurements.

VI. APPENDIX

The appendix collects all mathematical details that are
needed for the result shown in Thm. III.2. The first part
demonstrates some general differentiation rules for exponential
and negatively exponentiated functionals. In the second part,
three lemmas will be stated that supplement the proof sketch
provided in Sec. III-B. The last part demonstrates that the
original PHD filter is a limit case of the introduced method.

A. Preliminary results

Since the two PGFLs (10) and (11) are of special interest
in this article, let us determine the nth order derivatives of the
compositions exp(G(h)) and (G(h))−α for linear functionals
G which are stated in Prop. VI.2 and VI.4.

Lemma VI.1. The first-order derivative of the exponential
functional exp in composition with a general functional G(h)
is the functional chain differential

δ(exp ◦G)(h; η) = exp(G(h))δG(h; η). (20)

Proof. Cf. [10].

Proposition VI.2. Let G be a linear functional. Then the nth-
order derivative of the composition exp(G(h)) is found to be

δn(exp ◦G)(h; η1, . . . , ηn) = exp(G(h))
n∏
i=1

δG(h; ηi). (21)

Proof. The nth-order derivative of exp(G(h)) can be easily
seen from Faà di Bruno’s formula (8): since δ(2)G = 0 due to
the linearity of G, the only partition that leads to a non-zero



term is the set of singletons such that one factor δG(h; ηi) is
drawn from the exponential term for all directions η1, . . . , ηn.

The PGFL of the negative binomial distribution involves a
power −α where α ∈ R+ is a positive real number. It will be
shown in the following that the functional composition with a
power yields a similarly multiplicative result as seen above.

Lemma VI.3. The first-order derivative of the power func-
tional (.)−α in composition with a general functional G(h) is
the functional

δ(G−α)(h; η) = (−α)G(h)−α−1δG(h; η). (22)

Proof. For the proof of the lemma, the binomial theorem for
general exponents α ∈ R is used:

(x+ y)α =
∑
k≥0

(α)k

k!
xα−kyk. (23)

with the truncated factorial (α)k defined in (13).
In analogy to Lem. VI.1, consider a series of functions

(ηn)n∈N converging pointwise to δG(h; η) for n → ∞ and
a series (εn)n∈N converging to 0. Therefore,

δ(G−α)(h; η)
(6)
= δ

(
(.)−α

)
(G(h); δG(h; η))

= lim
n→∞

1

εn
[(G(h) + εnηn)−α − (G(h))−α]

(23)
= lim

n→∞

1

εn

∑
k≥0

(−α)k
k!

G(h)−α−k(εnηn)k −G(h)−α


= lim
n→∞

1

εn

∑
k≥1

(−α)k

k!
G(h)−α−k(εnηn)k


= lim
n→∞

[
(−α)G(h)−α−1ηn

+ εn
∑
k≥2

(−α)k

k!
G(h)−α−kεk−2

n ηkn︸ ︷︷ ︸
=0(n→∞)

]

= (−α)G(h)−α−1δG(h; η).

Proposition VI.4. For any linear functional G, the nth-order
derivative of the composition G(h)−α can be expressed as

δn(G−α)(h; η1, . . . , ηn)

= (−1)n(α+ n− 1)n G(h)−α−n
n∏
i=1

δG(h; ηi).
(24)

Proof. Thanks to the structure of (22), the nth-order differen-
tial of G−α can again be obtained inductively in analogy to
Prop. VI.2 if G is linear. The derivative of the outer function
creates a factor (−α− i+ 1) for each differentiation step.

B. Derivation of the filter

The following proof follows the sketch given in Sec. III. It
is divided into three main lemmas, VI.5, VI.6 and VI.7.

Lemma VI.5. With assumptions III.1, the joint target and
measurement process leads to a joint PGFL of the form

GΞ,Φ(g, h) = GΦ (Gd(g, h))Gb(g)Gc(g)

= exp
(
F1(g, h)

)(
F2(g)

)−α
,

(25)

where the functionals F1 and F2 are defined as

F1(g, h) =

∫
X

[
h(x)f(x)− 1

]
µΦ(x)dx

+

∫
Z

(g(z)− 1)µb(z)dz,

f(x) = 1− pd(x) + pd(x)

∫
Z
g(z)l(z|x)dz

(26)

and
F2(g) = 1 +

1

β

∫
Z

(1− g(z))sc(z)dz. (27)

Proof. The structure in (25) is obtained as follows. Since
the predicted, the birth and the clutter processes are assumed
to be independent, their PGFLs are simply multiplied to de-
scribe their superposition. Furthermore, the detection process
branches from the predicted process which leads to the nested
structure of their two PGFLs. By taking the assumptions III.1
into account, one easily verifies the functionals F1 and F2

by combining the two Poisson processes to a sum in the
exponential term.

Note that both F1 and F2 are linear in g and F1 is linear
in h, such that higher-order derivatives become zero. For the
sake of readability throughout following steps, let us define

F3(h|z) := δF1(g, h; δz)

=

∫
X
h(x)pd(x)l(z|x)µΦ(x)dx+ µb(z)

(28)

and note that δF2(g; δz) = − 1
β sc(z).

In order to write down expression (19), let us first find the
mth order derivative of (25) w.r.t. g.

Lemma VI.6. The mth order derivative of (25) w.r.t. g can
be written as

δmGΞ,Φ(g, h; δz1 , . . . , δzm)

= exp(F1(g, h))
m∑
k=0

(α− k + 1)k

βk
F2(g)−α−k

·
∑
Z⊆Zm

|Z|=k

∏
z∈Z

sc(z)
∏

z′∈Zm\Z

F3(h|z′)

 .

(29)

Proof. Since GΞ,Φ(g, h) = exp
(
F1(g, h)

)(
F2(g)

)−α
is a

product of two functionals dependent on g, the general higher-
order product rule (7) can be applied. First of all, let us define

G1(g, h) = exp
(
F1(g, h)

)
and G2(g) =

(
F2(g)

)−α
for the



sake of compactness. For the first term G1, it follows for
ω ⊆ {1, . . . ,m} with |ω| = m − k (and the corresponding
set Z ⊆ Zm of observations indexed by ω) using (8) and (21)
that

δm−kG1(g, h; (ηi)i∈ω)

(8)
=

∑
π∈Π(ω)

δ(|π|) exp

(
F1(g, h);

(
δ(|ω′|)F1

(
g, h; (ηj)j∈ω′

)︸ ︷︷ ︸
=0 for |ω′|>1

)
ω′∈π

)

= δm−k exp

(
F1(g, h);

(
δF1(g, h; ηi)

)
i∈ω

)
(21)
= exp(F1(g, h))

∏
z∈Z

δF1(g, h; δz)

= exp(F1(g, h))
∏
z∈Z

F3(h|z).

(30)

where Π(ω) denotes the partition set of ω. On the other hand,
the second term G2 has the higher-order derivative

δkG2(g; (ηj)j∈ω̄)

(8)
=

∑
π∈Π(ω̄)

δ(|π|)

(
F2(g)−α;

(
δ(|ω′|)F2(g; (ηk)k∈ω′)︸ ︷︷ ︸

=0 for |ω′|>1

)
ω′∈π

)

= δk

(
F2(g)−α;

(
δF2(g; ηj)

)
j∈ω̄

)
(24)
=

(α+ k − 1)k
βk

F2(g)−α−k
∏
z∈Z

sc(z).

(31)

with the complement ω̄ = {1, . . . ,m}\ω and corresponding
measurement set Z̄ ⊆ Zm\Z indexed by ω̄. These two results
(30) and (31) used in the product rule (7) give the desired
result.

Since the mean of a PGFL is its first-order moment at h = 1
as stated in (2), the PHD of (19) is found via

µΦ|Ξ(x|Zm) =
δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)|g=0,h=1

δmGΞ,Φ(g, 1; δz1 , . . . , δzm)|g=0
.

(32)
The derivative in the denominator of Eq. (32) was already

determined in Lem. VI.6, so one is left with another differ-
entiation of (29) w.r.t. h which leads to the derivative in the
numerator of expression (32) as follows:

Lemma VI.7. The first-order derivative of (29) w.r.t. h is
found to be

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

= exp(F1(g, h))
m∑
j=0

(α+ k − 1)k
βk

F2(g)−α−k

·

[ ∑
Z⊆Zm

|Z|=k

F4(g)
∏
z∈Z

sc(z)
∏

z′∈Zm\Z

F3(h|z′)

+
∏
z∈Z

sc(z)

( ∑
z′∈Zm\Z

µz
′

Φ (x)
∏

z′′∈Zm\Z
z′′ 6=z′

F3(h|z′′)

)]
.

(33)

The functions F4(g) and µzΦ(B) are defined as

F4(g) = δF1(g, h; δx)

=

(
1− pd(x) + pd(x)

∫
Z
g(z)l(z|x)dz

)
µΦ(x)

(34)

and

µzΦ(x) = pd(x)l(z|x)µΦ(x). (35)

Proof. Use the product rule (5).

Note that the first term of the r.h.s. of (33) corresponds to
the missed detection term, whereas the remaining expression
deals with the associations of x with the measurements zj .

In the end, the result Thm. III.2 is obtained by setting h = 1
and g = 0 and writing the last two results (29) and (33) in the
form (32).

Proof of Thm. III.2. To simplify the explicit form of fraction
(32), note that the term exp(F1(g, h)) cancels out imme-
diately such that one is left with a sum of two big frac-
tions coming from (33). Setting g = 0 eradicates the term
pd(x)

∫
Z g(z)l(z|x)dz, furthermore a factor F2(0)−α can be

removed in all terms. Since F2(0) = (1 + 1
β ), it simplifies

with the fraction in (17). To eliminate the product
∏
sc(z) in

each term, it is helpful to expand the fraction with 1∏
z∈Zm

sc(z)

which leads to the functions ek(Zm) as defined above.

C. The original PHD filter as a limit of the PHD filter with
NB clutter

It is possible to show that one can recover the classic
formulation of the PHD filter as a limit case of the PHD filter
with negative binomial clutter by fixing the ratio µc = α

β and
taking the limit α→∞. The only term in (14) which contains



α or β is Y (Z), thus let us have a look at this term in detail
first:

lim
α→∞

Y (Zm)

= lim
α→∞

m∑
k=0

α(α+1)···(α+k−1)
(β+1)k

em−k(Z)

= lim
α→∞

m∑
k=0

(α)k

(α+µc

µc
)k

em−k(Z)

= lim
α→∞

m∑
k=0

µkc

[
α

α+µc

α+1
α+µc

· · · α+k−1
α+µc

]
em−k(Z)

(])
=

m∑
k=0

µkc em−k(Z)

(36)

where l’Hôspital’s rule [20] was used in (]). For the fraction
Y (Zm\{z})
Y (Zm) , the limit becomes

lim
α→∞

Y (Zm \ {z})
Y (Zm)

=

∑m−1
k=0 µkc em−1−k(Zm \ {z})∑m

k=0 µ
k
c em−k(Zm)

=

∑m−1
k=0 µkc em−1−k(Zm \ {z})∑m

k=0 µ
k
c em−k(Zm)

·
1
µm
c

1
µm
c

=
1

µc

∑
Z⊆Zm\{z}

∏
z′∈Z

F3(1|z′)
µcsc(z′)∑

Z⊆Zm

∏
z′∈Z

F3(1|z′)
µcsc(z′)

(∗)
=

1

µc

∑
Z⊆Zm\{z}

∏
z′∈Z

F3(1|z′)
µcsc(z′)∑

Z⊆Zm\{z}
∏
z′∈Z

F3(1|z′)
µcsc(z′)

(
1 +

F3(1|z)
µcsc(z)

)

=
sc(z)

F3(1|z) + µcsc(z)
.

(37)

Equation (∗) was obtained by rearranging the sum in the
denominator to separate the terms with Z 3 z. By inserting
the result of (37) into (14), we obtain

lim
α→∞

µΦ|Ξ(x|Zm)

= µφΦ(x) +
∑
z∈Zm

µzΦ(x)

sc(z)

(
sc(z)

F3(1|z) + µcsc(z)

)
= µφΦ(x) +

∑
z∈Zm

µzΦ(x)

F3(1|z) + µcsc(z)

(38)

which is the update of the PHD filter [4].
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