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Abstract—Multiple-input–multiple-output (MIMO) sonar sys-
tems offer new perspectives for target detection and area surveil-
lance. This paper introduces a unified formulation for sonar MIMO
systems and focuses on the target detection and recognition capa-
bility of these systems. The multiplication of the number of trans-
mitters and receivers not only provides a greater variety in terms
of target view angles but also provides meaningful statistics on the
target itself. Assuming that views are independent and the MIMO
system is large enough, we demonstrate that target recognition is
possible with only one MIMO snapshot. By studying the detec-
tion performance of MIMO sonars we also demonstrate that such
systems solve the speckle noise and decorrelate individual scatter-
ers inside one cell resolution, leading to super-resolution imaging.
We also show that, if carefully designed, MIMO systems can sur-
pass the resolution of a synthetic aperture sonar (SAS) system
using the same bandwidth. All the discussed properties are derived
from the independent view assumption. Fulfilling this assumption
drives the design and efficiency of such systems.

Index Terms—MIMO sonar systems, multistatic sonars, target
recognition, super-resolution sonar images.

I. INTRODUCTION

MULTIPLE-INPUT–MULTIPLE-OUTPUT (MIMO) do-
es not have a strict and formal definition [1]. In this

paper, we define MIMO as a structure with multiple transmitters
and receivers which transmits a variety of waveforms and
has the capability to jointly process all the received signals.
MIMO systems can have collocated [2] or widely separated [3]
antennas. This paper focuses on spatially distributed MIMO
structures. MIMO has been widely investigated during the last
two decades for wireless communications, and has received a
lot of interest in recent years in the radar community [4]–[8].
Radar researchers have pointed out multiple advantages of
these systems such as diversity gain for target detection [2], [6],
[9], [10], angle of arrival [11], [12], and Doppler estimation
[3], [13]. Coherent processing also allows improved resolution
for target localization [14].

Multistatic sonar systems have also been investigated, mainly
in the antisubmarine warfare community. Such systems surpass
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monostatic sonar systems in target localization [15] and detec-
tion performance [16]. The Centre for Maritime Research and
Experimentation (CMRE, la Spezia, Italy), in particular, has
developed a deployable low-frequency multistatic sonar sys-
tem called DEMUS. The DEMUS hardware consists of one
source and three receiver buoys and can be denominated as a
single-input–multiple-output (SIMO) system. A series of trials
including preDEMUS06 and SEABAR07 [17], [18] have been
conducted by CMRE. Results of these trials show better detec-
tion and tracking performances [17]–[22]. However, very few
studies have investigated full MIMO sonar systems.

This paper focuses on the detection and recognition problems
using MIMO sonar systems with widely separated antennas. The
main contributions of the paper are as follows.

1) The reformulation of the MIMO equations for sonar sys-
tems (Section II). The model proposed is based on the
target form function formulation and, unlike the radar for-
mulation, intelligibly dissociates propagation from target
response. Although the model is derived from the radar
formulation, this approach emphasizes the fundamental
differences between radar and sonar systems.

2) A new bistatic modeling of cylindrical shell using vir-
tual point scatterers (Section III). The echo of man-made
objects with a relatively simple shape can be modeled
with very few scattering points. We show in Section III an
example of this statement.

3) The derivation of the recognition capability of MIMO
sonar systems (Section IV-A). Studying the target re-
sponse from a MIMO system leads to the observation that,
with enough independent observations, the target proba-
bility density function is very well estimated with a single
snapshot. An example of automatic target recognition is
presented.

4) The proof that MIMO systems can resolve the speckle
(Section IV-B). By fusing the target response of a well-
designed MIMO system, we demonstrate that when the
number of independent observations is close to infinity,
all the scatterers within one resolution cell decorrelate.

It is important to note that results 3) and 4) on the MIMO sonar
capabilities are derived independently of any particular MIMO
system geometry. The assumption of independent observations
between all the MIMO pairs is discussed (Section IV-C). A novel
measure of intercorrelation for a MIMO sonar system based on
the distance correlation [23] is proposed to measure effectively
the degree of independence of all the MIMO observations.

This paper is organized as follows. In Section II, we
present the radar MIMO formulation and derive the broadband
sonar MIMO expression. Section II-A focuses on the MIMO
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response of targets modeled by a finite point scatterers model.
In Section III, a finite point scatterer model for a bistatic sys-
tem is presented for a resonant target. Finally, in Section IV,
we demonstrate the sonar MIMO capabilities in terms of target
recognition and MIMO very-high-resolution imaging.

II. REFORMULATION OF THE BROADBAND MIMO
SONAR PROBLEM

A. The RADAR Formulation

The first formulation for MIMO systems for target detection
has been made by the radar community [4]. The MIMO system
model can usually be expressed by r = H.s + n, where r repre-
sents the receivers, s represents the transmitters, n is noise, and
H is the channel matrix. The channel matrix includes the wave
propagation in the medium from any transmitter to any receiver
and the target reflections. Some models use the point target
assumption [24] while more advanced versions use rectangular-
shape targets composed of an infinite number of scatterers [6].
We present here the most popular model for a radar target which
is the finite scatterer model [3], [10].

In [3], Haimovich et al. formulate the narrowband MIMO
radar equation using a finite point target model. A target is rep-
resented here with Q scattering points spatially distributed. Let
{Xq}q∈[1,Q ] be their locations. The reflectivity of each scatter-
ing point is represented by the complex random variable ζq . All
the ζq are assumed to be zero-mean, independent and identi-
cally distributed with a variance E[|ζq |2 ] = 1/Q. Let Σ be the
reflectivity matrix of the target Σ = diag(ζ1 , . . . , ζQ ). By using
this notation, the average radar cross section (RCS) of the target
{Xq},E[ΣΣT ], is normalized to 1.

The MIMO system comprises a set of K transmitters and
L receivers. Each transmitter k sends the pulse

√
E/K.sk (t)

where E is the total transmit energy of the MIMO system. We
assume that all the pulses sk (t) are normalized. With these
notations, the signal zlk (t) from transmitter t to receiver l and
interacting with the target can be written as

zlk (t) =

√
E

K

Q∑

q=1

h
(q)
lk sk (t − τtk (Xq ) − τrl(Xq )) (1)

with

h
(q)
lk = ζq e−j2πfc [τt k (Xq )+τr l (Xq )] (2)

where fc is carrier frequency, τtk (Xq ) represents the propa-
gation time delay between the transmitter k and the scattering
point Xq , and τrl(Xq ) represents the propagation time delay be-

tween the scattering point Xq and the receiver l. Note that h
(q)
lk

represents the total phase shift due to the propagation from the
transmitter k to the scattering point Xq , the propagation from
the scattering point Xq to the receiver l, and the reflection on
the scattering point Xq .

Assuming that the Q scattering points are close together (i.e.,
within a resolution cell), we can write

sk (t − τtk (Xq ) − τrl(Xq )) ≈ sk (t − τtk (X0) − τrl(X0))

= sl
k (t,X0) (3)

where X0 is the center of gravity of the target {Xq}. So (1)
becomes

zlk (t) =

√
E

K
sl

k (t,X0)

(
Q∑

q=1

ζq e−j2πfc [τt k (Xq )+τr l (Xq )]

)

(4)

=

√
E

K

(
Q∑

q=1

h
(q)
lk

)

sl
k (t,X0) (5)

=

√
E

K
hlk sl

k (t,X0) (6)

using the notation hlk =
∑Q

q=1 h
(q)
lk . Assuming a multitarget

scenario including N0 targets, the total signal rlk (t) from trans-
mitter l to receiver k can be written as

rlk (t) =
N0∑

n=1

z
(n)
lk (t) + nlk (t) (7)

where nlk is the total noise at receiver k. Note that the interaction
between targets is ignored here.

In this section, we propose a reformulation of the Haimovich
model presented in Section II-A to suit broadband sonar sys-
tems. Because the target response, the seabed, and surface re-
sponse or even the wave propagation is strongly dependent of the
frequency, a broadband sonar formulation is more appropriate
in the Fourier domain [25]–[27]. It also allows a clear separa-
tion of the different mechanisms involved in the echo formation.
Equation (1) becomes

Zlk (ω) =

√
E

K

Q∑

q=1

h
(q)
lk Sk (ω)e−jω [τt k (Xq )+τr l (Xq )]. (8)

Using the following notations:

τtk (Xq ) = τtk (X0) + τ̃tk (Xq )

τrl(Xq ) = τrl(X0) + τ̃tk (Xq ) (9)

and

Hlk (X0 , ω) =

√
E

K
.e−j (2πfc +ω ).[τt k (X 0 )+τr l (X 0 )] (10)

the following expression can be derived:

Zlk (ω) = Hlk (X0 , ω)

(
Q∑

q=1

h̃
(q)
lk e−jω [τ̃ t k (Xq )+ τ̃ r l (Xq )]

)

Sk (ω)

= Hlk (X0 , ω)F∞(ω, θl , φk )Sk (ω) (11)

where θl is the angle of view of the target from the transmit-
ter and φk is the angle of view of the target from the receiver.
Equation (11) can be interpreted as follows: the first term cor-
responds to the propagation of the wave to and from the target,
the second term is the form function of the target, and the third
term is the transmitted signal.

The main advantage of this formulation is the clear separa-
tion between propagation terms and target reflection terms. In
our formulation, the target form function F∞ is independent of
any particular model. The second advantage of this formula-
tion is that the generalization of (11) including multipath and
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Fig. 1. Sound interaction between a plane wave and a plastic cylindrical shell.

attenuation terms is straightforward. Considering P multipaths
between the transmitter l and the receiver k, (11) becomes

Zlk (ω) =
P∑

p=1

A(p)(ω)H(p)
lk (X0 , ω)F∞(ω, θ

(p)
l , φ

(p)
k )Sk (ω).

(12)
A(p)(ω) is the attenuation through path p.

In this formulation, we choose to ignore the Doppler shift
introduced by a moving target. Considering a target moving at
v = 1 m.s−1 and a pulse with f0 = 50 kHz central frequency, the
maximum Doppler shift is δf = 2f0v/c ≈ 67 Hz. Narrowband
Doppler-sensitive pulses have minimal spectral width. In that
case, the spectral width is dominated by the pulse width. With
a pulse duration of τ = 10−3 s, the maximal Doppler shift of
67 Hz is then marginal compared to the 2.5-kHz spectral width.

III. VIRTUAL POINT SCATTERERS MODEL FOR

A CYLINDRICAL SHELL

We derived earlier the MIMO sonar model from the finite
point scatterer model. In this section, we analyze further this tar-
get model. Despite the simplicity of this model, we demonstrated
in [28]–[30] that for monostatic sonar systems, man-made ob-
jects can be reasonably well modeled using this approach. We
even showed in [30] that this assumption leads to interesting fea-
tures to distinguish man-made objects from natural objects. We
extend here the monostatic point scatterer model to an accurate
bistatic model for a low impedance shell cylinder.

In [29], we demonstrated that the sound scattering of a low
impedance shell cylinder is analogous to the reflection by two
spherical mirrors (one convex for the front face and one concave
for the back face) in geometrical optics. Fig. 1 shows the echo
formation of an acoustic wave reflected by a plastic cylindrical
shell. The location of the two echo centers A1 and A2 (in Fig. 1)
can be computed thanks to the well-known formula of reflection
by a spherical mirror [31]

1

SA′ +
1

SA
=

2
SC

(13)

Fig. 2. Matching between the normalized spectra between the theoretical
prediction [32] and our model.

where A and A′ represent, respectively, the source and the
source image, C is the center of the sphere, and SC is the
radius of the sphere.

A1 and A2 are the source images of an incoming plane wave.
The two echo centers A1 and A2 are then exactly between the
center of the cylinder and the front and the back of the cylinder.
In our model, A1 and A2 will represent the virtual scatterers.
They act like point sources, but contrary to scattering points,
they emit the received pulse with a delay (positive or negative).

The transmitter k transmits the pulse sk (t). The acoustic wave
is reflected by the cylinder modeled by the virtual scatterers A1
and A2 to receiver l. Equation (14) expresses the acoustic field
rkl(t) received at receiver l

rkl(t) = sk

(
t − τkC − 3

2
SC

c
− τA 1 l

)
eiψ1

+ sk

(
t − τkC +

3
2

SC

c
− τA 2 l

)
eiψ2 (14)

where SC represents the radius of the cylinder, c is the speed of
sound in water, C is the center of the cylinder, and the notation
τkC represents the propagation time between the transmitter k
and C, and τAi l represents the propagation time between the
virtual scatterer Ai and the receiver l. ψi corresponds to the
phase shift introduced by the virtual scatterer Ai. For this case,
ψ1 = ψ2 = 0.

The two terms −3/2(SC/c) and +3/2(SC/c) represent the
negative and positive delays of the virtual scatterers. In Fig. 2,
we compare the echo spectra of our virtual scattering point
model with the analytic solution given in [32]. In this example,
the cylindrical shell is made of PVC, its diameter is 32 cm, and
its thickness is 3 mm. The receiver is placed at 4 m from the
shell at an angle of 30◦ relative to broadside. An excellent match
is found between the theoretical prediction and our model.

This result as well as results from [28]–[30] reenforces our
assumption that a simple shaped man-made target echo can
be modeled with a finite and small number of scatterers. This
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Fig. 3. Reflectivity probability density functions of a Q scattering point
target with Q = 2, 3, 4, 5 & 100 using the scatterer reflectivity model
from (15).

assumption differs greatly from radar models where targets are
modeled with high-density scattering points.

IV. STATISTICAL MIMO

A. Automatic Target Recognition Using Statistical MIMO

It is interesting to note that the term
∑Q

q=1 h
(q)
lk in (5) corre-

sponds in essence to a random walk in the complex plane where
each step h

(q)
lk can be modeled by a random variable. Random

walks are often used in physics to model the particle diffusion in
gas or liquid. Lets assume that the reflectivity coefficients ζq can
be modeled by the random variable 1√

Q
e2iπU where U ∈ [0, 1]

is the uniform distribution. This hypothesis implies that

h
(q)
lk =

1√
Q

e2iπU . (15)

The independence of each h
(q)
lk lies in the fact that the antennas

are widely spaced and there is no correlation between each
transmit → scattering point → receiver path. Using the central
limit theorem, we can compute the limit

lim
Q→+∞

√∣∣∣∣
∑Q

q=1
h

(q)
lk

∣∣∣∣

2

∼ Rayleigh(1/
√

2). (16)

Rayleigh(σ) represents the Rayleigh-distributed random vari-
able with parameter σ. Here σ = 1/

√
2. However, the central

limit theorem gives only the asymptotic behavior of the random
variable. As the number of scattering points becomes large,
the reflectivity of the target can be modeled by a Rayleigh
distribution.

Equation (16) links the expected reflectivity of the target
{Xq} to the expected diffusion of a particle following the ran-

dom walk
∑Q

q=1 h
(q)
lk . It has been proven in [33] that the conver-

gence of (16) is fast. To demonstrate this, we use the Moivre–
Laplace representation [which compares probability density
functions (pdfs)] to visualize the pdf convergence. In Fig. 3,
we compute the pdf of the reflectivity of a Q scattering point

target using the model given by (15). As this figure shows, for
Q ≥ 5, the reflectivity pdf matches closely the Rayleigh(1/

√
2)

probability distribution. In Fig. 3, we can see that the probabil-
ity function of the 100 scatterer target and Rayleigh(1/

√
2) are

almost indistinguishable.
We also note in Fig. 3 that while the convergence of the

reflectivity distribution function to a Rayleigh distribution is
fast, the reflectivity of a target with few scattering points (Q ∈
[2, 3, 4]) presents a very characteristic pdf. The small number
scatterer targets are particularly interesting because they are
more likely to represent simple shaped man-made target (cf.,
Section III).

Monostatic sonar systems only provide one observation of
the target per cycle. However, with MIMO systems, assum-
ing widely separated antennas, we have access to N = K × L
independent observations, where K is the total number of trans-
mitters and L is the total number of receivers. The question we
are asking here is: Can we estimate the number of scattering
points of a target with a large MIMO system? If yes, how many
observations (N) are needed to estimate the scattering point
density?

Here we want to take advantage of the dissimilarities of the
probability density functions to estimate the number of scat-
tering points. Each observation is a realization of the random

variable γn =

√∣
∣∣
∑Q

q=1 h
(q)
lk

∣
∣∣
2

with Q the number of scattering

points. Each set of observations Γ = {γn}n∈[1,N ] represents the
MIMO output (N is the total number of observations). Given a
set of observations Γ we can compute the probability that the
target has Q scatterers using Bayes rules

P(TQ |Γ) =
P(Γ|TQ )P(TQ )

P(Γ)
(17)

where TQ represents the event that the target has Q scatterers.
Assuming the independence of the observations P(Γ|TQ ) can
be written as

P(Γ|TQ ) =
N∏

n=1

P(γn |TQ ). (18)

P(γn |TQ ) is computed with the aid of the reflectivity density
function presented in Fig. 3. We consider four target types: two
scatterer target, three scatterer target, four scatterer target, and
five plus scatterer target. So Q ∈ {2, 3, 4, 5+}. Therefore, we
can write

P(Γ) =
5∑

Q=2

P(Γ|TQ )P(TQ ). (19)

Given that we have no a priori information about the target,
we can assume that P(TQ ) is equal for all target class TQ .
Equation (17) then becomes

P(TQ |Γ) =
∏N

n=1 P(γn |TQ )
∑5+

Q=2 P(Γ|TQ )
. (20)

The estimated target class corresponds to the class which
maximizes the conditional probability given by (20).

To validate the theory, a number of experiments have been
run in simulation. In the first experiment, 106 classification tests
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Fig. 4. (a) Correct classification probability against the number of independent
observations for four classes of targets (two, three, four, and five plus scattering
point targets). (b) Overall correct classification probability against SNR for
MIMO sonar systems with 10, 20, 50, 100, and 500 independent observations.

have been computed for MIMO sonar systems whose indepen-
dent observations vary from 2 to 1000. Note that these simula-
tions have been run with a 10-dB signal-to-noise ratio (SNR).
Fig. 4(a) draws the probability of correct classification for each
class depending on the number of observations. The first re-
mark we can make is that it is possible to estimate the number
of scattering points in a target if the number of scatterers is low
(≤ 4). The two scattering point target can be seen as a dipole
and its reflectivity pdf differs considerably from any n scatter-
ing point target (with n ≥ 2). For this reason, fewer independent
observations are needed to correctly classify this class of tar-
get. With only ten observations, a two scattering point target is
correctly classified in 96% of cases. Table I provides the over-
all classification using our pdf matching algorithm depending
on the number of independent observations. Only 100 indepen-
dent observations are needed to reach an overall 92% correct
classification.

In the second set of experiments, we computed the auto-
matic target recognition (ATR) performance against noise. The
MIMO observations were corrupted by an independent addi-
tive Rayleigh noise with an SNR varying from −10 to 20 dB.
Fig. 4(b) displays the probability of correct classification us-
ing the conditional probability maximization from (20) against

TABLE I
OVERALL CORRECT CLASSIFICATION DEPENDING ON THE

NUMBER OF OBSERVATIONS

number of observations correct classification

10 64%
50 86%
100 92%
200 97%
500 99.81%
1000 >99.999999 %

the SNR level for MIMO systems with 10, 20, 50, 100, and
500 independent observations. The Bayesian classifier is based
on matching target amplitude level to given pdfs. So it is not
surprising that a certain SNR level is needed. In Fig. 4(b), the
probability of correct classification stabilized at around 10-dB
SNR. The surprising factor came from the fact that the classifier
starts to perform better than random (25% correct classification)
at a negative SNR (around −3 dB). With 500 observations and
0-dB SNR, the classifier reaches 70% of correct classification.

The ATR performances of spatially distributed MIMO sys-
tems came from the multiplicity of observations in a single
snapshot. As long as the observations are statistically indepen-
dent, such systems can provide meaningful statistical informa-
tion about the target such as its pdf. We showed in this section
an example of how to use this information to classify target
based on its number of scatterers. Note that the important fac-
tor in the MIMO recognition capability is the independence of
the observations. We develop and quantify this assumption in
Section IV-C.

B. The Detection Problem With Statistical MIMO

The usual approach to the detection problem consists in eval-
uating the presence of a target of interest in the received signal
r. Under the null hypothesis H0 , the received signal r contains
only the noise n. Under the target presence hypothesis H1 , the
received signal contains both the target signal and the noise. A
detection rule function F(r) is compared to a given threshold
η. If F(r) < η, the hypothesis H0 is chosen; if F(r) ≥ η, the
hypothesisH1 is chosen. We can distinguish two kinds of errors:

1) the false alarm: the detector detects a target (F(r) ≥ η)
when no target is present;

2) the missed detection: the detector misses a target (F(r) <
η) when a target is present.

In the rest of this section, we compute the detection rule
function F(r) under the hypothesis made in Section II.

Let rl(t) be the total received signal at the receiver l. Accord-
ing to our previous notations we have

rl(t) =
K∑

k=1

zlk (t) (21)

where zlk (t) has been defined in (5). Let x be the KL × 1
output vector from the filter bank s∗k (t) with k ∈ [1,K]. Note
that x represents the match-filtered response and is computed
as follows:

[x](l−1)L+k = rl  s∗k (t). (22)
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We assume that all the emitted pulses sk (t) are orthogonal so

si  s∗j (t) = δ(i − j) (23)

where δ denotes the discrete Dirac delta function. Note that
MIMO waveform design for radar is still a very active part
of research. If in practice purely orthogonal waveforms do not
exist, different approaches are developed to minimize the wave-
form cross correlation including time, frequency, or code di-
vided approaches. However, the study of orthogonal waveforms
is beyond the scope of this paper and the reader can refer to
[34]–[37] for more information on the subject.

Using (23) into (22), we arrive at

[x](l−1)L+k = rl  s∗k (t) =
K∑

k=1

zlk  s∗k (t)

= zlk  s∗k (t) =
Q∑

q=1

h
(q)
lk . (24)

We choose the following detection rule:

F(r) =
1
N

||x||2 =
1
N

∑

l,k

||xlk ||2 (25)

where N = K × L represents the total number of observations
provided by the MIMO system. Using the same probability
distribution stated in the model presented in Section IV-A, we
deduce that under the H1 hypothesis, F(r) has the following
probability distribution:

F(r) ∼ 1
N

N∑

n=1

Rayleigh2(σ). (26)

Using the properties of the Rayleigh distribution, we can write

N∑

n=1

Rayleigh2(σ) ∼ Γ(N, 2σ2) (27)

where Γ is the Gamma distribution. So the pdf of the detection
rule F(r) is N.Γ(Nx,N, 1). The asymptotic behavior of the
detection rule F(r) can be deduced from the following identity:

lim
N →+∞

N.Γ(Nx,N, 1) = δ(1 − x). (28)

The convergence of the detection ruleF(r) is shown in Fig. 5.
The proof of (28) is given in the Appendix. Equation (28)

has interesting consequences: as the total number of observa-
tions N offered by the MIMO system increases, the pdf of
the detection rule F(r) under the H1 hypothesis tends to the
Dirac function δ1 . As a consequence, the random variable F(r)
representing the target intensity averaged over all the MIMO ob-
servations collapses to a real number: the average RCS defined
in Section II-A.

Haimovich [3] defines the average RCS as E[ΣΣT ] = 1. This
definition implies that the contribution of all the scatterers sums
incoherently. Considering a target contained within a single
resolution cell and assuming coherent sensors such as radar or
sonar, the scattering points interact coherently with each other
from a signal point of view. The random summation creates
constructive and destructive interferences as explained with the

Fig. 5. Probability density function of N.Γ(Nx, N, 1) for several values
of N .

random walk analogy in Section IV-A. We can then define the
effective RCS as the effective average reflectivity of the target
viewed by the sensors. We also demonstrated that we can very
accurately model the effective RCS of a target with more than
five scatterers by

E [Rayleigh(σ)] = σ

√
π

2
(29)

where σ = 1/
√

2. So the effective RCS of the target is in fact

E[{Xq}] =
√

π/2. (30)

It is important to note that E[{Xq}] < 1.
For this precise reason, the result given by (28) appears coun-

terintuitive. We would have expected the detection rule function
F(r) to tend to the mean of this Rayleigh distribution, i.e.,√

π/2, which represents the effective RCS defined earlier. The
asymptotic behavior of F(r) gives a new insight into the ca-
pabilities of MIMO systems. It demonstrates indeed that as the
number of independent observations increases, the MIMO de-
tection system decorrelates the contribution of each scatterer in
the echo signal and, in fact, solves the speckle noise in the target
response. Fig. 5 shows the convergence speed of (28). Note that
the convergence is relatively slow [especially when compared
to the convergence speed of (16)]. This figure seems to indi-
cate that roughly 100 observations are necessary to decorrelate
scatterers within one-pixel resolution.

C. Super-Resolution Capabilities of Coherent MIMO Systems

In the previous section, we derived an important result: with a
sufficient number of independent observations, MIMO systems
can decorrelate the scatterer contributions within one-pixel res-
olution. It is in that sense that we understand the notion of
“super-resolution”: all the scatterers within one resolution cell
decorrelate from each other. In other words, no artefacts induced
by the imaging of one scatterer (e.g., sidelobes) will disrupt the
imaging of the other scatterers. Super-resolution can then be
achieved using MIMO systems under certain conditions. So far
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Fig. 6. Bistatic configuration. θ represents the view angle of the transmitter
and φ represents the view angle of the receiver.

we have not taken into account the geometry of the target. We
can reasonably assume that a target has a fixed geometry during
the MIMO inspection. In this section, we intend to recover the
target geometry via imaging. In Sections IV-A and IV-B, we
analyzed the MIMO signals as statistical data. As the aim is
now to image the target, we need to introduce the geometry of
the MIMO sonar systems within its environment (i.e., the Tx
and Rx locations). An observation is then linked to a particular
configuration in the space, and each MIMO pair provides a view
of the target. We then define independent views as follows.

Two views are independent if and only if their respective
observations of a scene are statistically independent.

With the insight of the previous results we know that
to achieve super-resolution the following conditions must be
respected:

1) independent views: the antennas have to be sufficiently
spaced to ensure the independence of each view;

2) decorrelation: the total number of views has to be large
enough to ensure the scatterers decorrelation;

3) broadband: to achieve the range resolution needed, the
MIMO system has to use broadband pulses for range com-
pression.

So far we have assumed that all the MIMO observations were
independent. This hypothesis was necessary for MIMO systems
to achieve the recognition capability presented in Section IV-A
and to solve the target speckle (cf., the Appendix). We stipulated
that the antennas have to be sufficiently separated to ensure
the independent view assumption. In the next paragraphs, we
quantify the separation required to ensure independence and
develop independence measure for MIMO systems depending
on its geometry.

By introducing the term “view,” we implicitly introduce the
geometry and the configuration of the MIMO system. Let θ be
the view angle of the transmitter and φ the view of the receiver.
The bistatic configuration of a transmitter/receiver pair of the full
MIMO system is drawn in Fig. 6 and will be noted (θ, φ). We are
interested here in knowing the level of independence of a view
V (θ1 , φ1) with another view V (θ2 , φ2). To measure the depen-
dence of two random variables, the Pearson product–moment
correlation coefficient or correlation coefficient is commonly

used [38]. However, the correlation coefficient is not adequate
here. First, this coefficient has been designed with a normal
distribution assumption, and this assumption does not hold in
our case. Second, this coefficient only measures linear correla-
tion between the random variable. Finally, this coefficient is not
a real independence measure in the sense that the correlation
coefficient of two random variables can be null even if these
random variables are dependent. To overcome this we propose
to use the distance correlation introduced by Székely et al. [23].
Székely et al. define the distance covariance V as

V2 =
1

cpcq

∫

Rp + q

|fX,Y (t, s) − fX (t)fY (s)|2

|t|1+p
p |s|1+q

q

dtds (31)

where fX and fX,Y represent, respectively, the characteristic
and the joined characteristic function of X or (X,Y ); p and q
are, respectively, the dimensions of the random vector X and
Y ; and cd is defined as follows:

cd =
π(1+d)/2

Γ((1 + d)/2)
(32)

where Γ(.) is the full gamma function. For V2(X)V2(Y ) = 0,
the distance correlation is then defined as

R2(X,Y ) =
V2(X,Y )

√
V2(X)V2(Y )

. (33)

Székely et al. show [23] that R has “the properties of a true
dependence measure” and, in particular, that two random vectors
X and Y are independent if and only if R(X,Y ) = 0.

To assess the inter-views dependence of a MIMO system, 104

targets with two, three, four, or five scatterers were randomly
generated. All the targets are contained in a cell of 3λ radius.
Note that this MIMO system has a central frequency of f0 =
100 kHz and a bandwidth of Δf = 40 kHz. We will use this
configuration for all the simulations within this section. For each
target, its response V was computed as a function of the trans-
mitter and receiver view angle (θ, φ). Each pair (θ, φ), V (θ, φ)
can then be considered as a random vector. The distance correla-
tion R between all pairs (θn , φn ) ∈ [−π, π]2 is then computed.
For the view angles (θ0 , φ0), let A0 be the matrix defined by

A0(θ, φ) = R(V (θ0 , φ0), V (θ, φ)). (34)

Note that in the point scatterer model there is a symmetry be-
tween the transmitter and the receiver and V (θ, φ) = V (φ, θ).
For this reason, the matrix A0 is symmetric along its first
diagonal.

Let θ1 = θ0 − α and φ1 = φ0 − α. Since the problem is ax-
ially symmetric, we can write that

A0(φ, θ) = A1(φ − α, θ − α). (35)

So A0(θ, φ) can be computed for only one θ0 . We chose θ0 = 0.
For display purposes, we display in Fig. 7 the distance correla-
tion matrix 1 −A0(θ, φ) for φ0 = 0, φ0 = π/2, and φ0 = π.

Fig. 7(a) displays the monostatic case; the transmitter and the
receiver are in the same position: θ0 = φ0 = 0. Even though the
monostatic configuration is convenient from a practical point
of view it does not offer the best view in terms of correlation.
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Fig. 7. Distance correlation matrix 1 −A0 (θ, φ) for (a) φ0 = 0, (b) φ0 = π , and (c) φ0 = π/2.

The monostatic view correlates strongly with its neighbors (θ =
+α, φ = −α) for α ∈ [−25◦,+25◦]. It is interesting to note that
the monostatic view correlates as well with (θ = α, φ = α) for
α ∈ [−6◦,+6◦]. So if we consider a monostatic sonar turning
around the target for a full 360◦, an average of 30 independent
views will be obtained which is insufficient to achieve super-
resolution.

In Fig. 7(b), the target is in-between the transmitter and the
receiver. Although this configuration is not practical as the trans-
mitted wave will arrive at the same time as the target echo to
the receiver, it is interesting to note that all the opposite views
(θ, θ + π) for all θ correlate strongly.

Fig. 7(c) displays the distance correlation matrix with φ0 =
π/2. As predicted, we observe a symmetry along the first diago-
nal and A0(θ, φ) = A0(φ, θ). The correlation peaks are focused
on (θ0 , φ0) and (φ0 , θ0). This configuration is the most effective
as far as its independence is concerned, and the independence
of this view toward its neighbors is maximized.

It is important to note that these results are dependent on the
frequency used and the size of the cell. It can be shown that
increasing the frequency and/or the cell narrows the peaks of
Fig. 7(c). The potential number of independent views will then
increase. However, the derivation of this result goes beyond the
scope of this paper.

In the following simulation, we aim to demonstrate that we
can recover the geometry of a target (i.e., the location of its
scatterers). Given the results presented in Fig. 7 we chose

Fig. 8. MIMO configuration.

an “L” shape MIMO configuration as pictured in Fig. 8. The
transmitters are placed along the x-axis, and the receivers are
on the y-axis. For this experiment, the transducers are placed
at an equal spacing along the axis. The number of transmitters
and receivers and the spacing between them is adjustable. The
central frequency of the MIMO sonar system is 100 kHz with
a frequency band of around 40 kHz. We consider a three-point
scatterer target centered at the point (x = 20 m, y = 20 m); the
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Fig. 9. Three-scatterer target MIMO image using: (a) 10 Tx, 10 Rx with incoherent processing; and (b) SIMO with 1 Tx and 10 Rx with 3-m spacing.

scatterers are separated by one wavelength which corresponds
to 1.5 cm. Each scatterer has a reflectivity of 1/

√
3.

To image the output of the MIMO system, we will use the
multistatic backprojection algorithm which is a variant of the
bistatic backprojection algorithm developed by the SAR com-
munity. Further details can be found in [39]–[41]. Using the
backprojection algorithm, the SAS image is computed by inte-
grating the echo signal along a parabola. In the bistatic case, the
integration is done along ellipses. For the multistatic scenario,
the continuous integration is replaced by a finite sum in which
each term corresponds to one transmitter/receiver pair contri-
bution. It is worth mentioning that, due to its sparse geometry,
the MIMO imagery processing, using traditional backprojection
techniques, will potentially develop grating lobes, which can be
significant if the spatial sampling is regular. This problem is
included in the more general imagery problem, or how to form
a MIMO image. The subject is extremely vast and beyond the
scope of this paper.

In Fig. 9(a), the MIMO image using incoherent processing is
reconstructed (i.e., only the amplitude of the echoes has been
used in the multistatic backpropagation algorithm). This figure
represents in essence how the MIMO signal has been treated so
far: the detection processing has been done using only the am-
plitudes of the different views. As expected, the three-scatterer
target is represented only as a blob of energy. Note that the di-
mensions of this patch of energy represent the resolution limit of
the incoherent system, which is approximately 10 cm × 10 cm.

For comparison purposes, we plot in Fig. 9(b) the target image
obtained using a SIMO system with the same receiver array of
ten receivers with 3-m spacing but only one transmitter. With
only ten independent views, the scatterers within the target are
unresolved and only a blob of energy is visible.

In Fig. 10(a), we have considered a MIMO system with ten
transmitters and ten receivers with a spacing of 20 cm. For this
scenario the 20-cm spacing breaks the widely spaced antenna
assumption and the views are not exactly independent from each
other. For this reason, we only observe a blob of energy at the
target location.

In Fig. 10(c), the MIMO system consists of three transmitters
and three receivers with 3-m spacing. In this case, the spacing
between the antennas is several hundreds of wavelengths so the

independence of the views is respected. However, the total num-
ber of views is 3 × 3 = 9 independent views which is relatively
low according to the convergence speed of (28). In this scenario,
the number of views is too low to ensure the decorrelation of the
scatterers within the target. For this reason, only a blob of en-
ergy marks the target location. However, by closely inspecting
the central blob, it is possible to distinguish a structure.

Finally, in Fig. 10(e), we consider a MIMO system with ten
transmitters and ten receivers with a spacing of 3 m. With this
configuration, we respect the conditions stipulated earlier and
we are able to clearly image the three-scatterer target and in
doing so achieve super-resolution imaging.

It is interesting to compare these results to the intra-views
correlation of the different MIMO systems. Let us note {(θn ,
φn )n∈[1,N ]} the views of the MIMO system. The level of inter-
correlation for the full MIMO can be computed as

B(θ, φ) = max
n∈[1,N ]

An (θ, φ). (36)

In Fig. 10(b), (d), and (f) , we plot the 1 − B(θ, φ) func-
tions for the same MIMO configurations as the ones explained
in Fig. 10(a), (c) and (e), respectively. In Fig. 10(b), we are
considering the 10 × 10 MIMO system with 20-cm separation
between antennas. The 100 views produced by this configuration
are all concentrated around the (0◦,−90◦) view and are clearly
all correlated to each other. The independent views assumption
breaks down. In Fig. 10(d), the 3 × 3 MIMO configuration is
considered. The 3-m spacing between the antenna ensures view
independence and we can clearly see in the cluster nine peaks
corresponding to each view. In Fig. 10(f), the 10 × 10 MIMO
configuration is considered. Again, the 3-m antenna separation
provides the necessary independence between the views and the
100 correlation peaks are visible and distinct from each other.
The B(θ, φ) intercorrelation distance matrix then gives us an
insight on how to design an efficient MIMO system and ensure
the views independence. Assuming that the MIMO system pro-
vides enough views for recognition or super-resolution, each
view (θn , φn ) in B(θ, φ) should decorrelate as much as possible
with the other views (θm , φm )m =n .

In the second simulation, we aim to evaluate the distance
resolution of the 10 × 10 MIMO system with 3-m spacing, as
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Fig. 10. MIMO target image given and full MIMO intercorrelation distance matrix 1 − B(θ, φ) of (a) and (b) 10 Tx and 10 Rx with 20-cm spacing; (c) and
(d) 3 Tx and 3 Rx with 3-m spacing; and (e) and (f) 10 Tx and 10 Rx with 3-m spacing.

Fig. 11. Waterfall plot of the cross section of the two-scatterer MIMO image
for a distance separation between 0 and 20 mm.

described in Fig. 10(e), by imaging two scatterers at 20-m range
and separated by a distance d. Fig. 11 provides a waterfall plot of

the cross section of the two-scatterer MIMO image for a distance
separation between 0 and 20 mm. The MIMO system is able to
separate two scatterers separated by 6 mm. To put this number
into perspective, it is interesting to compute the maximum range
resolution c/2Δf where c is the speed of sound in water and Δf
is the bandwidth of the pulse. In our case, the resolution in range
is then around 2 cm. For the resolution in cross range, the theory
predicts a resolution of (kmax − kmin)/c. Here, we have fmin =
80 kHz and fmax = 120 kHz, which results in a resolution of
around 3.75 cm. Equation (28) predicts statistically the super-
resolution capability of MIMO systems. With this simulation,
we show that large MIMO systems can achieve at least 3.5 times
better resolution than other traditional systems.

For comparison purposes, we have computed the SAS image
of the same target as described in Fig. 8 using the same frequency
band and at the same range as in the previous experiment. The
SAS image of the target is displayed in Fig. 12.

The SAS system runs in a straight line along the y-axis at
20-m range from the target. Using the phase center approxima-
tion, the SAS is seen as a single-channel system and the target
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Fig. 12. Three-scatterer target using SAS system. (a) SAS image. (b) 1 − B(θ, φ) function for the SAS configuration.

Fig. 13. Four-scatterer target imaged with (a) circular SAS, and (b) 40 × 40 MIMO system.

echoes are computed at every λ/2 along the synthetic antenna.
In Fig. 12(a), the beamwidth is fixed to 10◦. Note that the choice
of a 10◦ beamwidth for this simulation was inspired by the 7◦

beamwidth of the MUSCLE SAS system from CMRE. In to-
tal, 467 echoes are computed and the SAS image is formed
using backpropagation algorithm. Despite the high number of
views and because all the SAS subviews are highly correlated,
as shown in Fig. 12(b), the SAS system fails to separate the three
scatterers. Using the same model and parameters as described
in Section IV-C, we can infer that monostatic systems correlate
on average for 12◦. With a 10◦ beamwidth, a SAS system then
sees at most two to three independent views of the target. Note
that in this aspect the SAS image reconstruction is based on the
hypothesis that each pixel contains one scatterer. SAS systems
require strong correlation between consecutive views to track
and correct the echoes phase changes. So in that aspect, it is not
surprising that the monoviews from SAS systems are so strongly
correlated with each other.

Of course, the SAS system used in the previous experiment
has a much smaller aperture than the 10 × 10 MIMO system
described earlier. For the next experiment, we consider four
scatterers target. Each scatterer is located at a vertex of a square
whose size is λ/2. For the SAS system, we consider a circular
SAS target acquisition at 20-m range from the target. For the
MIMO system, we consider a 40 × 40 MIMO system. We call
the element a collocated transmitter and receiver. Ten elements

with 3-m spacing are placed on the axis x = 0 m, ten on the y =
0 m axis, ten on the x = 40 m line, and finally, ten on the y =
40 m line.

In that case, the 360◦ SAS aperture provides a total of 16756
echoes. These echoes are processed using a backprojection al-
gorithm modified for the circular acquisition to form the image
pictured in Fig. 13(a). Despite the maximum aperture of the
SAS, the sidelobes induced by the proximity of the scatterers
greatly deteriorate the image. The four scatterers are visible but
barely distinguishable from their sidelobes. One can count five
or even nine potential scatterers. Fig. 13(b) shows the MIMO
image of the target. The target is resolved and the four scatterers
are clearly separated. We estimated that the circular aperture of
the SAS system provides approximately 35 independent views
of the target. The 16756 SAS echoes are not statistically suffi-
cient to fully resolve this specific target. However, the MIMO
structure described above provides around 1300 independent
views, which is enough to resolve the target. By carefully de-
signing the MIMO system, we were able to provide enough
independent views for the target to be properly imaged. In this
instance, MIMO provides better imagery and more resolution
than the SAS system.

V. CONCLUSION

In this paper, we have studied the fundamental principles of
MIMO sonar systems. We have proposed a new formulation for
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broadband MIMO sonar systems by separating clearly the terms
of propagation and the terms of target reflection. This formula-
tion is more flexible than the one proposed by the radar commu-
nity for different target model integration. The main advantage
of statistical MIMO systems is to procure in a single snapshot
a large number of independent views of a target of interest. The
multiple independent observations can provide useful statistics
of the target such as its pdf for example. We showed in this pa-
per an example of how to use the MIMO signal and developed
an algorithm to determine the number of scatterers contained
in a target and then demonstrated the recognition capability of
MIMO systems. Finally, we have explained why well-designed
MIMO systems can achieve super-resolution and in certain cases
surpass the resolution of SAS systems. By highlighting the fact
that it is the independence between the views that makes MIMO
sonar systems attractive, we provided guidelines to how and
where the transmitters and the receivers should be placed. The
MIMO sonar capabilities described in this paper make such a
system a very attractive tool for surveillance. In a fixed environ-
ment, such as a harbor or a narrow channel, the transmitters and
receivers elements can be carefully placed to ensure coverage
and view independence. The recognition capabilities of MIMO
sonar can then be used be identify threats.

APPENDIX

PROOF OF THE CONVERGENCE OF (28)

We demonstrate here the result given by (28). We stipulated
that

lim
N →+∞

N.Γ(Nx,N, 1) = δ(1 − x) (37)

where Γ(x, k, θ) represents the Gamma distribution function
and δ(x) is the Dirac function. The Gamma distribution function
is defined as follows:

Γ(x, k, θ) = xk−1 e−x/θ

θkΓ(k)
(38)

with x ≥ 0 and k, θ > 0, and Γ(k) represents the Gamma func-
tion. Note that Γ(x, k, θ) > 0. In our case, we are looking at the
convergence of

N.Γ(Nx,N, 1) = N(Nx)N −1 e−N x

Γ(N)

=
NN

Γ(N)eN
.

(
xe1−x

)N

x

= A(N)f(x,N) (39)

where A(N) = NN /Γ(N)eN and f(x,N) = (xe1−x)N /x.
Note that A(N) represents a normalization factor and for all
N

∫ +∞

x=0
xN −1eN (1−x)dx =

1
A(N)

. (40)

Asymptotic Behavior of A(N): To get the asymptotic be-
havior of A(N), we use the Stirling formula

n! ∼
√

2πn
(n

e

)n

(41)

A(N) =
NN

Γ(N)eN

∼ eN −1
√

2π(N − 1)(N − 1)N −1

NN

eN

∼
(

N

N − 1

)N −1 1
e

N
√

2π(N − 1)

∼
(

N

N − 1

)N −1 1
e

√
N

2π
. (42)

By using the following identity:

lim
n→+∞

(
n

n − 1

)n−1

= e (43)

we arrive at

A(N) ∼
√

N

2π
. (44)

It is important to note that limN →+∞ A(N) = +∞.
Study of the f(x,N) Function: The f(x,N) function has

the following properties:

f(x,N) > 0, for all x,N ≥ 0 (45)

f(0, N) = 0, for N > 0 (46)

lim
x→+∞

f(x,N) = 0 (47)

f(x,N) ≤ f(xN ,N), where xN = 1 − 1
N

(48)

f(xN ,N) =
(

N − 1
N

)N −1

e → 1, when N → +∞ (49)

f(x,N + 1) ≤ f(x,N). (50)

It is also important to note that f(x,N) is an increasing function
from 0 to xN and a decreasing function from xN to +∞.

Convergence of the A(N)f(x,N) Function: To prove that
the A(N)f(x,N) function converges to a Dirac function, we
need to demonstrate the following properties:

lim
N →+∞

∫ +∞

x=0
A(N)f(x,N)dx = 1 (51)

lim
N →+∞

A(N)f(x,N) = 0, for x = 1 (52)

lim
N →+∞

A(N)f(1, N) = +∞. (53)

Property (51) is given by definition: A(N)f(x,N) repre-
sents a probability density so for all N we have

∫ +∞
x=0 A(N)

f(x,N)dx = 1.
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Proof of (53): For x = 1, we have

lim
N →+∞

A(N)f(1, N) = lim
N →+∞

A(N) × lim
N →+∞

f(xN ,N)

= lim
N →+∞

A(N) = +∞. (54)

Proof of (52): For x = 1, we want to prove that
limN →+∞ A(N)f(x,N) = 0. To demonstrate this, we need to
proceed using reductio ad absurdum.

We suppose that there exists an x0 = 1, a ξ > 0, and a N0 ≥ 0
such that for all N ≥ N0 , f(x0 , N) > ξ. We suppose here that
x0 < 1. Note that the proof for x0 > 1 is identical and is left to
the reader. We can choose N0 such that N0 > 1/1 − x0 . Note
that η = 1 − x0/2

∫ +∞

x=0
A(N)f(x,N)dx ≥

∫ 1− 1
N

x=x0

A(N)f(x,N)dx

≥ A(N)
(

1 − 1
N

− x0

)

× min
x∈[x0 ,1− 1

N ]
(f(x,N))

≥ A(N) · η · ξ (55)

So

A(N)ηξ ≤ 1

ξ ≤ 1
ηA(N)

, for all N > N0 . (56)

We deduce from the last equation that limN →∞ A(N) = +∞,
ξ = 0 which is in contradiction with the hypothesis.

So for all x = 1, limN →∞ A(N)f(x,N) = 0 �
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