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Abstract—In the modern battlefield scenario multiple sources
of information may be exploited to mitigate uncertainty. Polariza-
tion and spatial diversity can provide useful information for spe-
cific and critical tasks such as the Automatic Target Recognition
(ATR). In this paper the use of pseudo-Zernike moments applied
to the full-polarimetric Gotcha dataset is presented. Specifically
improved single platform ATR performance is demonstrated
through the use of multiple observations.

I. INTRODUCTION

In the modern battlefield scenarios the availability of
multiple sources of information, such as spatial, temporal or
other diversities, allows improvements in sensor performance
and capabilities. In particular, modern radar scenario involves
different diversities, some provided by the sensor position
in the space-time plane: spatial diversity given by multiple
platforms observing from different positions and temporal
diversity provided by multiple passes over the same area from
the same platform, and their combinations; and others given
by different sensor characteristics: frequency, waveform and
polarization diversity. Of particular interest is the combination
of these two categories of diversities that can be described
as a Distributed Multiple-Input Multiple-Output Radar Sensor
Network (DMRS).

In our work we investigate the possibility of exploiting
this information for improving the performance compared to
that possible from a classic Single-Input Single-Output system.
Other important aspects include the ability of achieving high
performance with low cost algorithms and the capability to
summarize the discriminating information thereby reducing the
communication overload between sensors.

A particular application is Automatic Target Recognition
(ATR) [1], [2], [3] and its lower level tasks (identification,
characterization and fingerprinting) from Synthetic Aperture
Radar (SAR) data. Moreover, the way in which targets scatter
signals of different polarizations also contains information that
can be exploited in target recognition, so the use of full-
polarization SAR data can lead to improved ATR performance
and for this reason is also of particular interest.

In this paper an algorithm for ATR, with target identi-
fication capabilities, from multiple spatially separated full-
polarimetric SAR data is presented. The algorithm exploits

full-polarimetric information and, at low computational cost,
extracts reliable and easy-to-share discriminating features
based on the pseudo-Zernike moments. The proposed algo-
rithm is tested with the Gotcha dataset [4] that contains
multiple observations of commercial vehicles.

The remainder of the paper is organised as follow. In
Section II, the novel algorithm to extract the features from a
full polarimetric SAR observation is introduced together with
the decision fusion framework for the case of multiple passes.
Section III introduces the Gotcha dataset and present the results
obtained with different data training set for the case of 1, 2 and
3 sensors sharing the individual classification outputs. Section
IV concludes the paper.

II. FEATURES EXTRACTION EXPLOITING
PSEUDO-ZERNIKE MOMENTS

In this section, a novel feature for full polarimetric ATR
is introduced. The approach is based on the use of pseudo-
Zernike moments [5], to obtain reliable feature vectors with
relatively small dimension and low computational complexity.
The use of pseudo-Zernike moments was introduced in the
radar literature for the ATR applied to micro-Doppler signa-
tures [6]. The novel feature benefits from specific properties of
the pseudo-Zernike moments such as invariance with respect
to translation and rotation and in addition scale invariance can
be included if required by the specific applications.
In the following subsections the background theory defining
the pseudo-Zernike moments is introduced, followed by the
novel feature extraction algorithm and the decision fusion
framework.

A. Pseudo-Zernike Moments

Let f(x, y) be a non-negative real image. The complex
pseudo-Zernike moments can be computed as [5]

ψn,l =
n+ 1

π

2π∫
0

1∫
0

W ∗n,l (ρ cos θ, ρ sin θ, ρ) ·

f(ρ cos θ, ρ sin θ)ρdρdθ,

(1)
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where the symbol (·)∗ indicates the complex conjugate oper-
ator and Wn,l are the pseudo-Zernike polynomials. The latter
are a set of orthogonal functions that can be written in the
form

Wn,l (x, y, ρ) =Wn,l (ρ cos θ, ρ sin θ, ρ)

= Sn,l (ρ) e
jlθ,

(2)

with j =
√
−1, x = ρ cos θ, y = ρ sin θ, l an integer,

and Sn,l(ρ) a polynomial (called a radial polynomial) in ρ
of degree n such that n ≥ |l|. Notice that the modulus
of (2) is rotational invariant [5]. Moreover, these functions
form a complete basis and satisfy, on the unit disc (i.e. for
x2 + y2 ≤ 1), the orthogonality relation [5]∫∫

x2+y2≤1

W ∗n,l
(
x, y, x2 + y2

)
Wm,k

(
x, y, x2 + y2

)
·

dx dy =
π

n+ 1
δmnδkl, (3)

where δmn is the Kronecker delta function, i.e. δmn = 1 if
m = n, and 0 otherwise. Finally, as given in [5], the radial
polynomials, Sn,l(ρ), can be computed through their explicit
expressions

Sn,l(ρ) =

n−|l|∑
k=0

ρn−k(−1)k (2n+ 1− k)!
k! (n+ |l|+ 1− k)! (n− |l| − k)!

. (4)

Notice that, for a given n the number of linearly independent
pseudo-Zernike polynomials is (n + 1)2. Moreover, as previ-
ously stated an important characteristic of the pseudo-Zernike
moments is the simple rotational transformation property due
to (2); indeed, the moment requires only a phase factor for the
rotation [5].

B. Feature Extraction Algorithm

The feature extraction algorithm is summarized in the block
diagram shown in Figure 1, while a detailed explanation of the
processing steps is described below.

The complex valued image for each polarization from the
j-th sensor is defined as Xj(x, y, i) ∈ CB×Z×4 with x and
y representing the range and cross-range pixel, respectively,
of the B × Z sub-image containing the target and i the index
of the i-th component of the vector p = [HH,V V,HV, V H]
identifying the transmitter/receiver polarization.

The feature extraction algorithm begins with the generation
of the full polarimetric magnitude image of the target area

Ωj(x, y) =
4∑
i=1

|Xj(x, y, i)|. (5)

As the value of Ωj(x, y) can cover a very large range of values,
its logarithm is used instead

Ω̃j(x, y) = log10(Ωj(x, y)). (6)

In order to obtain features that are independent of different
intensity levels, due to different observation angles and channel
propagation properties, a normalization of Ω̃j is required to
restrict its magnitude to the interval [0, 1]

Ωj(x, y) = Ω̃j(x, y)−min[Ω̃j(x, y)],

Ω̂j(x, y) = Ωj(x, y)/max(Ωj(x, y)). (7)

Fig. 1. Block diagram of the proposed feature extraction and classification
algorithm.

Next step of the algorithm (Fig. 1) is the projection of
Ω̂j(x, y) onto a basis of pseudo-Zernike polynomials. The
polynomials can be pre-computed through (4) since it depends
on the sub-image size B × Z only (due to the dependencies
of (4) only on ρ), and therefore may be used to populate a
look up table. As the pseudo-Zernike polynomials are defined
on the unit disc, the support of the image Ω̂j(x, y) is scaled,
before the moments are computed, to avoid information loss.
Applying (1) to Ω̂j(x, y), the pseudo-Zernike expansion is
obtained as

ψn,l =
n+ 1

π

2π∫
0

1∫
0

W ∗n,l (ρ cos θ, ρ sin θ, ρ) ·

Ω̂j(ρ cos θ, ρ sin θ)ρdρdθ.

(8)

The output of this stage is the set of (n+ 1)2 magnitudes of
the pseudo-Zernike coefficients. From (4) the modulus of the
pseudo-Zernike moments are rotational invariant. This means
that at a given observation angle the modulus of the moments
are independent of the relative orientation of the target in the
image plane. Hence, the feature vector is

F = [|ψ0,0|, . . . , |ψN,−N |] . (9)

Finally, the feature vector, F , is normalized using the
following linear rescaling

F̃ = (F − µF)/σF, (10)

where µF and σF are the mean and standard deviation of the
feature vector. These values are then used to populate the
features to be used as input to a classifier.
The last step of the algorithm consists of the classification
procedure. The classification has been performed using a
k-Nearest Neighbour (K-NN) classifier because of its low
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computational load and its capability of providing score values
as an output [7], [8], however other classifiers with similar
characteristics can also be selected.

The sum method is selected as fusion rule [7], [8] and is
performed at the confidence level. Let V be the number of
possible classes, for each of the J sensors, the k-NN classifier
returns as output a V -dimensional vector sj containing the
confidence levels for each cluster. The confidence levels are
defined as the number of nearest neighbours belonging to the
v-th class divided by k. The sum of all the scores is then
computed as

λ =
J∑
j=1

sj , (11)

with λ = [λ1, λ2, . . . , λL], from which the estimated class can
be selected

v̂ = argmax
v

λ. (12)

This fusion strategy allows the exploitation of the infor-
mation from multiple images and is known for its robustness
[7], [8] and allows the definition of the unknown class if a
draw occurs, because λ could not have a unique maximum
element, or if the maximum value of λ does not satisfy a
specific requirement, such as a sufficient level of confidence.

III. PERFORMANCE ANALYSIS

In this section the performance analysis of the ATR algo-
rithm described in Section II is presented. The algorithm is
applied to real full polarimetric X-band SAR data. The dataset
used in this analysis is the “Gotcha Volumetric SAR Data Set
V1.0” [4], consisting of SAR phase history from a sensor with
carrier frequency of 9.6 GHz and 640 MHz bandwidth, full
azimuth coverage and 8 different elevation angles. The imaging
scene consists of numerous civilian vehicles and calibration
targets.

For our analysis the aperture has been divided in sub aper-
tures of 4 degrees in azimuth in order to have approximately
equal range-azimuth resolution cell of 23 cm. In this way
90 images (looks) for each of the 8 circular passes (different
elevations) are available in four polarizations for each of the 9
commercial vehicles considered. In order to allow the reader
to understand the imaged targets and scene, in Fig. 2 the
9 vehicles are shown; while in Fig. 3 the 360 degree full
polarimetric image of the scene of interest is shown; the
image is a multi-look image (including all the 90 looks of one
circular pass). As already mentioned, for testing a single look
is used. In Fig. 3, the 9 vehicles are labelled with alphabetic
letters. Specifically, the 9 vehicles are: A) Chevrolet Prizm,
B) Nissan Sentra, C) Nissan Maxima, D) CASE Tractor, E)
Ford Taurus, F) Chevrolet Camry, G) Hyundai Santa Fe, H)
Chevrolet Malibu, I) Hyster Forklift.

To perform the analysis equal sized sub-images (50 × 50
pixels) containing each vehicle are selected. Specifically, of
the 8 available passes (different elevations) a subset of the
pass with lower altitude is used to train the classifier while
all the other images (i.e. the unused images from the lowest
pass and all the images from the other seven, higher elevation,
passes) are used to test the algorithm. Different elevation
and azimuth angles are considered for testing the images
to provide independent training and validation sets. Three

Fig. 2. Images of the 9 vehicles.

Fig. 3. Full Azimuth and full polarimetric magnitude SAR image of the area
of interest containing the 9 vehicles.

analyses are presented, each of them performed with different
selections of the training subset. The three training sets consist
of 4, 10 and 30 images selected with azimuth spacing of of
92◦, 36◦ and 12◦ respectively. The use of a limited number
of aspect angles for training is meaningful in terms of a
practical realization. Specifically the creation of the training
database, and in terms of algorithm robustness with respect to
classifying observations acquired from angles different from
those used for training. The analysis is performed using 1,
2 and 3 test data images to characterize the benefits of the
multi-sensor framework and the classification fusion stage.
Moreover, to evaluate the performance of the classification
algorithm, the correct classification, defined as the number of
correctly classified sub-images over the total number of sub-
images under test, is used as figure of merit. For the case
of 1 test image all the available images have been used. For
the case of 2 and 3 test images 10000 pairs or triples are
chosen randomly. For this reason the standard deviation of the
correct classification rate for the cases of 2 and 3 sensors is
also computed.

In Fig. 4 examples of the tested configurations are shown.
Multiple acquisitions can be assumed to be done by multiple
platforms or from the same platform in different instants of
time. Moreover the analysis is performed for different orders
of the pseudo-Zernike moments between 1 and 20 and using a
3-NN classifier (k = 3). Fig. 5 shows the results obtained for
1, 2 and 3 platforms using a training samples spacing of 92◦,
equivalent to 4 observations of a target with different equally
spaced initial azimuth angles (e.g. 0◦, 92◦, 184◦ and 276◦). For
the case of 2 and 3 platforms the 1×σ confidence intervals are
less than 1%. From the results in Fig. 5 the algorithm shows a
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(a) 1 platform (b) 2 platforms (c) 3 platforms

Fig. 4. 1, 2 and 3 sensor acquisition examples.

good level of performance identifying the 9 different classes,
despite the small amount of training observations available.
The benefit of using multiple passes is evident and can be
quantified in the order of 10% for both the 2 and 3 platforms
cases. In addition the confidence intervals obtained with the 2
and 3 platform cases show that the performance result to be
very stable. Table I shows an example of confusion matrix
for the case of 1 Sensor, with an image spacing of 92◦,
obtained with a pseudo-Zernike moments order equal to 10 (the
corresponding correct classification is 56.23%). From Table
I, it can be seen how the classification error occurs mainly
for classes F, G and H, confused with classes C, B and C
respectively.

Fig. 6 shows the results obtained with an angular spacing
of 36◦. In this case a higher angular density of training samples
allows the algorithm to perform better in all the analysed
configurations, with the 3 platforms case approaching the 90%
of correct identification.

0 2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100

Pseudo−Zernike Moments Order

%
 o

f C
or

re
ct

 C
la

ss
ifi

ca
tio

n

Results for Training Images Collected Every 92 Degrees

 

 

1 Platform
 
2 Platforms
 
3 Platforms

Fig. 5. Percentage of correct target classification vs order of the pseudo-
Zernike moments obtained using 4 observations for training with spacing of
92◦.

For the results shown in Fig. 7 an angular of 12◦ was
assumed, leading to 30 images used for training. This amount
of training data corresponds to a third of all the possible
observation angles. The algorithm performance increases for

TABLE I. CONFUSION MATRIX FOR THE 1 SENSOR CASE, IMAGE
SPACING 92◦ , PSEUDO-ZERNIKE MOMENTS ORDER 10.

class
A B C D E F G H I

cl
as

s
A 582 17 3 0 23 0 0 3 88
B 11 590 7 16 10 52 25 1 4
C 4 43 605 0 29 17 0 18 0
D 2 80 7 425 202 0 0 0 0
E 7 118 16 106 465 4 0 0 0
F 10 131 360 12 24 175 1 2 1
G 5 423 19 54 63 60 79 0 13
H 0 15 594 2 56 15 0 34 0
I 38 9 0 0 0 0 0 0 669
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Fig. 6. Percentage of correct target classification vs order of the pseudo-
Zernike moments obtained using 10 observations for training with spacing of
36◦.

the 1, 2 and 3 platforms case, with a maximum attained
for the moment order 20, reaching, respectively, a correct
classification of 92.43%, 96.85% and 98.26%.

Acquiring a training database with multiple observations
per target represents a cost that is, in some cases, relatively
time consuming (e.g. very high number of different classes to
be populated). The second case considered (36◦) represents a
good trade-off between performance and costs.

Clearly, the proposed algorithm appears to have multiple
advantages: reliable target identification, multi-observation fu-
sion capabilities without the requirement of a multi-platform
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Fig. 7. Percentage of correct target classification vs order of the pseudo-
Zernike moments obtained using 30 observations for training with spacing of
12◦.

training set, ability to provide good automatic target identi-
fication performances with a limited set of target observa-
tions as training, the capability to identify target observed
from an angle different form those used for training. The
pseudo-Zernike moments properties as translation and rotation
independence makes the algorithm robust with respect to the
relative target orientation in the image plane and not registered
images between different platforms.

IV. CONCLUSION

In this paper a novel algorithm for automatic target
recognition with the capability of target identification has
been presented. The proposed algorithm exploits the pseudo-
Zernike moments derived from full polarimetric SAR images
as features used to identify different targets. Moreover, the
algorithm allows the fusion of the classification result of each
of multiple observations from different aspect angles. The
classification capabilities of the proposed approach have been
evaluated using real multiple passes full polarimetric SAR
data of different commercial vehicles. The performances, in
terms of correct target classification, have been quantified;
moreover, the confusion matrix was used to identify cases in
which the approach is less robust. The results have indicated
a high confidence target identification and multi-observation
fusion capabilities without the requirement of a multi-platform
training set.
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