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Abstract—The problem of coherent multi-polarization SAR
change detection assuming the availability of image pairs, col-
lected from N multiple polarimetric channels, is addressed in
this paper. At the design stage, it is assumed that the reference
and test images from the same polarimetric channel may exhibit
a power mismatch. The change detection problem is formulated
as a binary hypothesis testing problem, the principle of invari-
ance is used to obtain the maximal invariant statistic, and the
Generalized Likelihood Ratio Test (GLRT) is exploited to form
a scale-invariant Constant False Alarm Rate (CFAR) decision
rule. Results on real high resolution SAR data are provided that
show the effectiveness of the proposed scale-invariant decision
structures.

I. INTRODUCTION

The ability to identify temporal changes within a given
scene starting from a pair of co-registered SAR images rep-
resenting an area of interest is a challenging SAR signal
processing problem and is known as change detection [1],
[2]. Two main approaches, known as incoherent and coherent,
have been proposed in the literature to process the image pair.
The former attempts to detect changes in the mean power
level of a given scene exploiting only the images intensity
information. The latter jointly use both amplitude and phase
from the reference and the test data to detect possible changes.

Starting from the multi-polarization data model developed
in [5] and [6], we generalize this model in this paper, ac-
counting for a possible scale mismatch factor, and propose a
new framework for change detection based on the theory of
invariance in hypothesis testing problems [10], [11]. This is a
viable means to force some desired properties to a decision
statistic at the design stage and has already been successfully
applied in some different radar detection problems [12], [13].
The principle of invariance allows us to focus on decision rules
which exhibit some natural symmetries implying important
practical properties such as the Constant False Alarm Rate
(CFAR) behaviour. Furthermore, the use of invariance leads to
a data reduction because all invariant tests can be expressed in
terms of a statistic, called maximal invariant, which organizes
the original data into equivalence classes. Also the parameter
space is usually compressed after reduction by invariance and
the dependence on the original set of parameters become
embedded into a maximal invariant in the parameter space
(induced maximal invariant). Furthermore, the new framework
is able to produce a scale-invariant decision rule, providing
advantages in terms of robustness and false alarm rejection.
This is an important property as images over the same scene
can exhibit different intensity scales due to different observa-

tion angles and propagation properties. These effects can lead
to false alarms in a change detection framework that is not
designed to be robust with respect to such a scale variations.

The remainder of the paper is organized as follows.
In Section II, we deal with the formulation of the multi-
polarization SAR change detection problem. In Section III the
maximal invariant for the scale-invariant SAR change detection
problem is defined. The scale invariant Generalized Likelihood
Ratio Test (GLRT) detector is introduced in Section IV, and
in Section V we assess the performance of the introduced
invariant test on real multi-polarization SAR images. Finally,
in Section VI, we draw conclusions.

A. Notation

We adopt the notation of using boldface for vectors and
matrices. The transpose and conjugate transpose operators are
denoted, respectively, by the symbols (·)T and (·)†. tr (·)
and det(·) are respectively the trace and the determinant of
the square matrix argument. I and 0 denote respectively the
identity matrix and the matrix with zero entries (their size is
determined from the context). Diag (a) indicates the diagonal
matrix whose i-th diagonal element is the i-th entry of a.
The curled inequality symbol � is used to denote generalized
matrix inequality: for any Hermitian matrix A, A � 0 means
that A is a positive definite matrix. The General Linear group
of degree N over the field of complex numbers, denoted by
GL(N), is the set of N × N non-singular matrices together
with the operation of ordinary matrix multiplication. H++

N and
R++ denote, respectively, the set of N×N Hermitian positive
definite matrices and the set of positive real numbers. 1N is
the 1×N vector with all the entries equal to one.

II. PROBLEM FORMULATION

A multipolarization SAR sensor measures, for each pixel
of the image under test, N ∈ {2, 3} complex returns, collected
from different polarimetric channels (for instance HH and VV
for N = 2; HH, VV, and HV with reference to N = 3).
The N returns from the same pixel are stacked to form the
vector X(l,m), where l = 1, . . . , L and m = 1, . . . ,M (L
and M represent the vertical and horizontal size of the image,
respectively). Therefore, the sensor provides a 3-D data stack
X of size M×L×N which will be referred to in the following
as the “datacube”.

For SAR change detection applications, we assume that
two datacubes X (reference data) and Y (test data) of the
same geographic area are available. Furthermore it is assumed
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that they are collected from two different sensor passes and
are accurately pixel aligned (co-registered). We focus on the
problem of detecting the presence of possible changes in a
rectangular neighbourhood A, with size K = W1×W2 ≥ 3, of
a given pixel. To this end, we denote by RX (RY ) the matrix
whose columns are the vectors of the polarimetric returns
from the pixels of X (Y ) which fall in the region A with
SX = RXR

†
X and SY = RYR

†
Y .

The matrices RX and RY are modelled as statistically in-
dependent random matrices. Moreover, the columns ofRX and
RY are assumed statistically independent and identically dis-
tributed random vectors drawn from a complex circular zero-
mean Gaussian distribution with positive definite covariance
matrix ΣX and ΣY respectively. Under the aforementioned
settings, the change detection problem in the region A can be
formulated in terms of the following binary hypothesis test{

H0 : ΣX = γΣY

H1 : ΣX 6= γΣY
(1)

where the null hypothesis H0 of change absence is tested
versus the alternative H1 accounting for the parameter γ > 0
that models possible received power variations between two
different acquisitions from the same scene, due to not perfectly
aligned flight paths as well as channel propagation effects.

Exploiting the Gaussian assumption, we can write the joint
probability density function (pdf) of RX and RY as

fRX ,RY
(RX ,RY |H1,ΣX ,ΣY ) =

1

π2NK det(ΣXΣY )K
exp

{
−tr

(
Σ−1X SX + Σ−1Y SY

)}
.

(2)

Using the Fisher-Neyman factorization theorem [15], we can
claim that a sufficient statistic for (1) is represented by the two
sample Grammian matrices SX and SY which are statistically
independent and follow a complex Wishart distribution, i.e.

fSX
(SX |H1,ΣX) =
cW

det(ΣX)K
exp

{
−tr

(
Σ−1X SX

)}
det(SX)K−N , SX � 0

(3)

fSY
(SY |H1,ΣY ) =
cW

det(ΣY )K
exp−

{
tr
(
Σ−1Y SY

)}
det(SY )K−N , SY � 0

(4)

with cW a normalization constant. From the sufficient statistic
we can evaluate the optimum Neyman-Pearson (NP) detector
as the Likelihood Ratio Test (LRT), which, after standard
algebra and statistical equivalences, can be expressed as

tr
[(

Σ−1Y
γ
−Σ−1X

)
SX

] H1
>
<
H0

T0 (5)

where T0 is the detection threshold. Evidently, test (5) is not
Uniformly Most Powerful (UMP) and, consequently, it is not
practically implementable because it requires the knowledge
of ΣX , γ, and ΣY which, in realistic applications, are usually
unknown.

III. DATA REDUCTION AND INVARIANCE ISSUES

Both hypotheses under test are composite or, otherwise
stated, H0 and H1 are equivalent to a partition of the parameter
space Θ into the two disjoint sets

Θ0 =
{
ΣX = γΣY , (ΣX ,ΣY , γ) ∈ H++

N ×H++
N ×R++

}
Θ1 =

{
ΣX 6= γΣY , (ΣX ,ΣY , γ) ∈ H++

N ×H++
N ×R++

}
(6)

This formulation emphasizes that the individual values of
the nuisance parameters are irrelevant: one must only decide
which hypothesis is valid, namely whether the covariances are
proportional or not. This remark suggests that we can cluster
the data considering transformations that leave the following
unaltered:

a. the two composite hypotheses, namely the partition of
the parameter space;

b. the families of distributions under the two hypotheses.

This goal can be achieved through the Principle of Invariance
[11]. According to this principle, we look for transformations
that preserve the formal structure of the hypothesis testing
problem and, then, we derive decision rules invariant to them.
Such a principle also acts as a data reduction technique
leading to a reduced observation space of significantly lower
dimensionality than the original one.

It is not difficult to prove that our testing problem is
invariant under the group of transformations G acting on the
sufficient statistic as:

G =
{
g : SX → BSXB

† , SY → aBSYB
† ,

B ∈ GL(N) , a ∈ R++
}

(7)

In fact, the families of distributions are preserved because
if SX and SY are Wishart distributed then BSXB

† and
BSYB

† are also Wishart with the same scalar parame-
ters and matrix parameter B†ΣXB and aB†ΣYB, where
B ∈ GL(N) and a > 0. Moreover, the original partition of
the parameter space is left unaltered since if ΣX 6= γΣY

then BΣXB
† 6= aγBΣYB

† and if ΣX = γΣY then
BΣXB

† = aγ1BΣYB
†.

A. Maximal Invariant Design

The invariance property induces a partition of the data
space into orbits (or equivalence classes) where, over each
orbit, every point is related to every other through a trans-
formation which is a member of the group G. Any statistic
that identifies different orbits in a one-to-one way significantly
reduces the total amount of data necessary for solving the
hypothesis testing problem and constitutes the compressed data
set to be used in the design of any invariant detector. These
kind of statistics are called maximal invariants since they
are constant over each orbit (invariance) while they assume
different values on different orbits (maximality).

Formally, a statistic T(SX ,SY ) is said to be a maximal
invariant with respect to the group of transformations G if and
only if

• Invariance:
T(SX ,SY ) = T[g(SX ,SY )], ∀g ∈ G.
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• Maximality:
T(SX1 ,SY1) = T(SX2 ,SY2) implies that ∃ g ∈ G
such that (SX2 ,SY2) = g(SX1 ,SY1).

Notice that there are many maximal invariant statistics, but
they are equivalent in that yield statistically equivalent de-
tectors. Moreover, all invariant tests can be expressed as a
function of the maximal invariant statistic [10], which for the
problem of interest is provided by the following proposition

Proposition 1: A maximal invariant statistic for problem
(1) with respect to the group of transformations (7) is the (N−
1)-dimensional vector(

λ2
λ1
,
λ3
λ1
, . . . ,

λN
λ1

)
(8)

where λ1 ≥ λ2 ≥, . . . ,≥ λN are the eigenvalues of SXS−1Y .

Interestingly the principle of invariance realizes a significant
data reduction: the maximal invariant statistic is a real N -
dimensional vector whereas the original sufficient statistic
comprises two N ×N Grammian matrices SX and SY .

B. Induced Maximal Invariant Design

The data transformation induces a parameter transforma-
tion which leaves unaltered the two composite hypotheses. In
other words, by the principle of invariance, the parameter space
is also partitioned into orbits which usually results in a reduced
set of parameters. The relevant parameters are embodied into
an induced maximal invariant, namely any function of the
parameters that is constant over each orbit of the parameter
space (invariance) but assumes different values over different
orbits (maximality).

For the case at hand, an induced maximal invariant is

composed of
(
δ2
δ1
, . . . ,

δN
δ1

)
, where δ = [δ1, . . . , δN ]T are

the eigenvalues of the matrix:

ΣXΣ−1Y . (9)

The previous claim highlights that the principle of in-
variance yields also a significant reduction of the number of
the parameters: in fact, the induced maximal invariant is an
(N−1)-dimensional vector while the original parameter space
was composed of the two covariance matrices ΣX , ΣY and
γ.

We explicitly observe that in the reduced parameter space
the partition corresponding to the two composite hypotheses
of the test (1) is Ξ0 = {1N−1}, relative to ΣX = γΣY ,
and Ξ1 = {1N−1}, relative to ΣX 6= γΣY , where {1N−1}
is the set of the (N − 1)-dimensional column vectors with
positive elements and at least one entry different from 1.
The structure of Ξ0, which now corresponds to a simple
H0 hypothesis, clearly shows that all invariant receivers that
process a maximal invariant statistic through a transformation

independent of
(
δ2
δ1
, . . . ,

δN
δ1

)
, achieve the CFAR property.

IV. GLRT DERIVATION

This section derives the GLRT detector for the considered
problem. Precisely, the decision rule (10) is considered, which,

after the optimizations over ΣX and ΣY at the numerator and
over ΣY at the denominator can be recast (after some algebra
and statistical equivalences) as,

min
γ>0

[
γNdet2

(
SX
γ

+ SY

)]
det(SX) det(SY )

H1
>
<
H0

T1 , (11)

or equivalently as

min
γ>0

[
γNdet2

(
S
− 1

2

Y SXS
− 1

2

Y

γ
+ I

)]
det(S

− 1
2

Y SXS
− 1

2

Y )

H1
>
<
H0

T1, (12)

where T1 is a suitable modification of the original threshold
in (10). In order to proceed further we have to distinguish
between the cases of two (N = 2) and three (N = 3)
polarimetric channels.

A. Case N = 2

Forcing N = 2 in (11) yields

min
γ>0

[
γ2
(
λ1
γ

+ 1

)2(
λ2
γ

+ 1

)2
]

λ1λ2

H1
>
<
H0

T1 . (13)

It is now necessary to compute

min
γ>0

[
1

γ

(
λ1λ2 + γ2 + (λ1 + λ2)γ

)]2
. (14)

Standard arguments on optimization of univariate functions
provides the optimal point γopt,2 =

√
λ1λ2. As a consequence,

the GLRT becomes(√
λ1
λ2

+ 1

)2(√
λ2
λ1

+ 1

)2 H1
>
<
H0

T1 . (15)

Observing that the left hand side of (15) is a monotone

increasing function of
√
λ1
λ2

for
√
λ1
λ2
∈ [1,+∞[, the GLRT

(15) turns out to be equivalent to

λ1
λ2

H1
>
<
H0

T2 , (16)

with T2 the modified threshold. Two important comments are
now in order. First, test (16) is equivalent to comparing the
condition number of the matrix S−

1
2

Y SXS
− 1

2

Y with a detection
threshold to establish the presence of changes in the considered
scene. Second, the GLRT statistic is a maximal invariant.

V. TESTING ON REAL DATA

In this section the performance analysis on real X-band data
is presented. The dataset used is the Coherent Change Detec-
tion Challenge dataset acquired by the Air Force Research
Laboratory (AFRL) [14], the data contains passes acquired
with three polarizations (HH, VV and HV).

For our analysis we focus on two acquisitions from the
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max
ΣX

max
ΣY

1

(π)2NK detK(ΣX) detK(ΣY )
exp

[
−tr

(
Σ−1X SX + Σ−1Y SY

)]
max
γ>0

max
ΣY

1

(π)2NKγNK det2K(ΣY )
exp

[
−tr

(
Σ−1Y

(
SX
γ

+ SY

))] H1
>
<
H0

T , (10)

entire dataset, unfortunately the ground truths of the data is
not available (e.g. the actual changes between two different
acquisitions), so the selection of two passes providing the
opportunity to generate a sufficiently accurate ground truth was
required. For this reason the best candidates result to be two
passes: the acquisition named “FP0124” is used as reference
pass, while the acquisition “FP0121” is used as test pass. The
selected area of interest is a sub-image of 1000× 1000 pixels
(i.e., L = M = 1000) and is composed of several parking
lots which are occupied by numerous parked, (i.e., stationary)
vehicles. For this particular scenario the changes between the
reference and test images (denoted by X and Y respectively),
occurred during the time interval between the two acquisitions
can be distinguished in two cases:

• a vehicle is present in X but is not present in Y , this
case is referred as departure;

• a vehicle is not present in X but is present in Y , this
event is referred as arrival.

Using the cases defined above, a total of 34 changes between
X and Y can be visually identified (by flickering the two
images). The obtained ground truth is shown in Figure 1-a,
wherein the black rectangle represent departures and the white
rectangles indicate arrivals.

Although the acquisitions were performed during the same
day and the images were registered, the returns from a scatterer
can contribute differently to neighbour pixels, for example a
slightly different aspect angle can produce a different amount
of energy spill-over. These relative differences in the imaged
data can lead to false alarms in the change detection results.
For this reason we consider a guard area around each arrival-
departure. This allows the definition of an extended ground
truth (see Figure 1-b) used in the following to compare the
performance of the considered detection algorithms.

In order to assess the performance of the detectors we

(a) Ground truth. (b) Ground truth with guard cells.

Fig. 1: Ground truth superimposed to the reference image and
ground truth with the addition of guard cells.

present both the a-posteriori false alarm probability and the
change detection maps for the case N = 2, (detector (16)). In
the first analysis the thresholds are set to ensure Pfa = 10−4,

the thresholds have been obtained via Monte-Carlo simula-
tions. In Table I the a-posteriori false alarm probability for
(16) and the detectors (7), (10), (11), and (12) in [18] are
reported. These values are estimated by applying a scaling α
to the reference image, in particular values of α equal to 1,
1.5 and 2 were considered.

Table I shows how detector (16) provides constant false
alarm probability despite the scale variation (possibly due to a
non-perfect calibration)of the images for both the W = 3 and
W = 5 cases.

In the second analysis the detector (16) has been tested by
imposing Pfa = 10−3 and with W = 5, on scaled version of
the test image α equal to 1, 1.5 and 2. An example of detection
map for α = 1, W = 5 and N = 2 is shown in Figure 2. For
all the three analysed cases the detection maps resulted to be
identical with 2184 detections in total of which 1223 resulted
to be actual changes, as expected from the scale invariance of
the proposed approach.

Detector
W α (7) in [18] (10) in [18] (11) in [18] (12) in [18] (16)

3
1 0.039 0.041 0.030 0.046 0.044

1.5 0.081 0.079 0.077 0.078 0.044
2 0.212 0.177 0.199 0.218 0.044

5
1 0.077 0.077 0.065 0.079 0.063

1.5 0.330 0.189 0.281 0.342 0.063
2 0.981 0.653 0.948 0.982 0.063

TABLE I: False alarm probability for the case N = 2 on real
data, detector (16) compared with those proposed in [18].

Fig. 2: Detection map for α = 1, W = 5 and N = 2.

VI. CONCLUSIONS

Multi-polarization scale-invariant SAR change detection
has been considered in this paper. The problem has been
formulated as a binary hypothesis test and the principle of
invariance has been applied to design decision rules. The
GLRT detector for the case of two polarizations has been
derived and tested on real SAR data in this paper. In a future
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work the case of full polarimetric data will be addressed
applying the same framework.
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