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Abstract—We investigate the design of joint transmitter and re-
ceiver beamformer within the context of multiple-input multiple-
output (MIMO) radar employing two-dimensional (2D) arrays of
antennas. Specifically, we derive the transmit, waveform diversity
and overall transmit-receive beampatterns for the Phased-MIMO
radar with fully-overlapped subarrays and compare them with
the respective beampatterns for the Phased-array and MIMO
radar only schemes. As reported for one-dimensional linear
arrays, fully-overlapped 2D subarrays offer substantial improve-
ments in performance as compared with the phased-array and
MIMO only radar models. The work considers both the adaptive
(convex optimization, CAPON beamformer) and non-adaptive
(conventional) beamforming techniques. The simulation results
demonstrate the superiority of the fully-overlapped subapertur-
ing in both cases.

I. INTRODUCTION

The field of radar research is vast and has been endlessly
developing since late 1930’s. The gigantic breakthroughs in
digital signal processing and the constant growth in com-
putational capabilities have enabled the introduction of an
emerging technology known as multiple-input multiple-output
(MIMO) radar [1]. The essence of MIMO radar is the use of
multiple antennas to simultaneously transmit diverse, possibly
linearly independent waveforms, in contrast to a phased-array
radar which transmits scaled versions of a single waveform.
This waveform diversity offers superior capabilities as com-
pared to the phased-array model. There are two fundamental
regimes of operation investigated in the literature. In the first
type, the transmit and receive antenna elements are widely
spaced, whereas, in the second type, the antenna elements are
closely spaced.

MIMO radar with colocated antennas [2] is known to offer
higher sensitivity to detect slowly moving targets, higher
angular resolution, increased number of detectable targets,
direct applicability of adaptive array techniques and better
parameter identifiability. On the other hand, MIMO radar with
widely spaced antennas provides the ability to capture the
spatial diversity of the target’s radar cross section (RCS),
enhance the ability to combat signal scintillation, estimate
precisely the parameters of fast moving targets and improve
the target detection performance, by taking advantage of the
target’s geometrical characteristics [3].

The substantial improvements offered by MIMO radar
technology come at the cost of losing the transmit coherent

processing gain offered by phased-array radar [4], [6]. This
absence can lead to signal-to-noise ratio (SNR) decrease and
beam-shape loss [4], [6]. The aforementioned disadvantages
raise the dilemma of whether or not MIMO radar will meet
the expectations that it will provide a colossal opportunity for
improvements in the field of radar research. This work stems
from the belief that MIMO radar is not a substitute technology
that will totally outclass phased-array radars, but rather it
provides the opportunity of jointly exploiting the benefits of
both models, as reported recently in the literature [6], [8].
The authors of [8] proposed a radar model, utilizing the
idea of dividing a large number of colocated transmit/receive
elements into multiple subarrays, that are not allowed to
overlap. Phased-MIMO radar is a breakthrough notion in
radar technology, introduced in [6]. The vantage point of this
technique is the partition of the transmit array into subarrays
that are allowed to overlap. Our earlier work in [7] investigated
the application of this Phased-MIMO radar notion to 2D
transmit arrays by designing the transmit beampattern through
a convex optimization problem that minimizes the difference
between a desired transmit beampattern and the actual one
produced by the system [1].

In this paper, we examine transmit, waveform diversity
and overall transmit-receive beamforming design for Phased-
MIMO radar with fully-overlapped 2D transmit subarrays.
We design the Phased-MIMO beampatterns using both con-
ventional and adaptive techniques and compare them with
the respective beampatterns of the phased-array and MIMO
radars. Specifically, in order to design the adaptive transmit
beampattern, we solve a convex optimization problem that
minimizes the difference between a desired transmit beampat-
tern and the actual one produced by the system. Furthermore,
we obtain the adaptive overall transmit-receive beampattern
by utilizing the Minimum Variance Distortionless Response
(MVDR) Capon beamformer. The simulation results highlight
the benefits provided by the 2D Phased-MIMO radar with fully
overlapped subarrays.

II. 2D PHASED-MIMO SYSTEM MODEL

We consider a monostatic radar system employing a uni-
form rectangular array (URA), which consist of Mt × Nt
and Mr × Nr antennas at the transmitter and the receiver
respectfully, where Mt and Mr are the number of elements
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Fig. 1: Fully overlapped subaperturing of a 5 × 5 uniform
rectangular array (URA) when K=4.

in each column and Nt and Nr are the number of antennas
in each row of the planar arrays. The 2D Phased-MIMO
model is based on partitioning the transmit 2D array into K
subarrays (1 ≤ K ≤ Mt ×Nt) that are fully overlapped [6],
as depicted in Fig.1, where a subaperturing of a 5×5 transmit
URA into 4 subarrays is presented. Moreover the kth subarray
is composed of Mt × Nt − K + 1 antennas and emits the
kth element of the predesigned independent waveform vector
ψ(t) = [ψ1(t), . . . , ψK(t)]T of size K×1, which satisfies the
orthogonality condition

∫
T0
ψ(t)ψH(t)dt = IK , where (·)T

denotes the transpose, t refers to the time index within the
radar pulse, T0 is the radar pulse width, IK is the K × K
identity matrix, and (·)H denotes the Hermitian transpose.

In order to characterize the fully overlapped subaperturing
of the 2D Phased-MIMO model mathematically, we introduce
an Mt ×Nt selection matrix Zk [5]. When the (mn)th entry
equals 1 then the (mn)th element of the 2D array belongs to
the kth subarray, while a 0 entry in Zk means that the element
is not a part of the kth subarray. Thus, the matrix Zk defines
the structure of the kth subarray. As a result, the MtNt × 1
transmit steering vector related to the kth subarray can be
constructed as:

ak(θ, φ) = vec(Zk � [µ(θ, φ)νT (θ, φ)]) (1)

where vec(·) is the operator that stacks the columns of a matrix
into one column vector, � denotes the Hadamard product, θ
and φ denote the elevation and azimuth angles respectively.
The auxiliary vectors µ(θ, φ) ∈ CMt×1 and ν(θ, φ) ∈ CNt×1

are derived from the array geometry and they are defined as
follows:

µ(θ, φ) = [1, ej2πdmsin(θ)cos(φ), . . . , ej2π(Mt−1)dmsin(θ)cos(φ)]T

ν(θ, φ) = [1, ej2πdnsin(θ)sin(φ), . . . , ej2π(Nt−1)dnsin(θ)sin(φ)]T

where dm and dn are the distances between the adjacent
antennas at each column and at each row respectively.

Our primary objective is to focus the transmit energy onto a
certain 2D sector in space, determined by the direction of the
target, and at the same time to achieve high transmit coherent
processing gain. Hence, a weight vector should be designed
for each of the K subarrays to steer the transmit beam in the
desired spatial sector. The MtNt× 1 vector which consists of
the complex envelope of the signals at the output of the kth

subarray can be modeled as sk(t) =
√

MtNt

K wkψk(t), where
wk ∈ CMtNt×1 is the transmit beamformer weight vector,
used to form the kth transmit beam. The power of the emitted
signal from the kth subarray focused at a generic focal point
with coordinates (θ, φ) is given by

Pk(θ, φ) = aHk (θ, φ)E{sk(t)sHk (t)}ak(θ, φ)

=
MtNt
K

aHk (θ, φ)wkwHk ak(θ, φ) (2)

Using the far field assumption and adding the power of the
probing signals emitted by all K subarrays, we write the 2D
array transmit beampattern as

P (θ, φ) =

K∑
k=1

MtNt
K

aHk (θ, φ)wkwHk ak(θ, φ) (3)

Assuming that there is a target present in the far-field of
the transmit and receive arrays at direction θt in the elevation
domain and φt in the azimuth domain, the signal reflected by
the aforementioned target is modeled as

r(t, θt, φt) =

√
MtNt
K

βt

K∑
k=1

wHk ak(θt, φt)e
−jτk(θt,φt)ψk(t)

(4)
where βt is the complex amplitude proportional to the radar
cross section (RCS) of the target, and τk(θt, φt) is the time
required for the signal to cover the distance between the first
element of the transmit array and the first element of the kth

subarray.
If we assume that in addition to the desired target, there are

L active interfering targets at locations {θi}Li=1, {φi}Li=1 and
with reflection coefficients {βi}Li=1, then under the simplifying
assumption of point targets, the MrNr×1 received data vector
can be described by the equation

x(t) = r(t, θt, φt)b(θt, φt) +

L∑
i=1

r(t, θi, φi)b(θi, φi) + n(t)

(5)
where b(θ, φ) is the MrNr×1 steering vector of the received
array and n(t) is the noise component that is supposed to
have zero mean. By applying matched filtering to the received
data vector for each of the orthogonal waveforms ψk(t), k =
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1, ...,K, we can construct the KMrNr×1 virtual receive data
vector as

y =

∫
T0

x(t)ψ∗
k(t)dt

=

√
MtNt
K

βtu(θt, φt) +
L∑
i=1

√
MtNt
K

βiu(θi, φi) + n̂ (6)

where n̂ =
∫
T0

n(t)ψ∗
k(t)dt is the KMrNr × 1 noise term

with covariance matrix Rn = σ2
nIKMrNr

(σ2
n is the noise

variance) and the KMrNr × 1 vector

u(θ, φ) = (c(θ, φ)� d(θ, φ))⊗ b(θ, φ) (7)

is the virtual steering vector of the system. In order to derive
the virtual steering vector we used the K×1 transmit coherent
processing vector

c(θ, φ) = [wH
1 a1(θ, φ), . . . ,wH

KaK(θ, φ)]T (8)

and the K × 1 waveform diversity vector

d(θ, φ) = [e−jτ1(θ,φ), . . . , e−jτK(θ,φ)]T (9)

In the case of the fully-overlapped partitioning of the 2D
transmit array into K subarrays, the waveform diversity vector
is equal to the K first elements of the transmit steering vector
a(θ, φ) = vec(µ(θ, φ)νT (θ, φ)).

At this point it is apparent that the 2D Phased-MIMO radar
scheme exploits the benefits of both the phased-array and the
MIMO radar model as a tradeoff between transmit coherent
processing gain and higher angular resolution. This tradeoff is
determined by the selection of the number of fully overlapped
subarrays of the 2D transmit array. In particular, if we choose
K = 1 the radar model simplifies to the conventional phased-
array scheme, since the whole transmit array forms the only
subarray which emits only one waveform. However, if K =
MtNt is selected, the radar model simplifies to a MIMO radar.

III. TRANSMIT-RECEIVE BEAMFORMING FOR THE
PHASED-MIMO MODEL

In this section, we investigate conventional and adaptive
techniques to design the transmit and the overall transmit-
receive beampattern of the Phased-array, Phased-MIMO and
MIMO radar schemes.

A. Conventional Beampattern Design

Conventional non-adaptive beamforming is the simplest
technique to design the transmit and overall beampatterns,
however, it offers the highest possible output SNR gain only
when a single target is observed in the background of white
Gaussian noise [9]. By applying the conventional beamforming
in the proposed 2D Phased-MIMO model, the normalized
transmit weight vector for the kth subarray can be obtained
as

wk =
ak(θt, φt)

‖ak(θt, φt)‖
, k = 1, . . . ,K (10)

where || · || denotes the Euclidian norm. In order to derive
the conventional transmit beampattern, we substitute (10) in
(3). By enforcing the conventional beamformer at the virtual
receive array, the KMrNr×1 receive weight vector is defined
as

wr = u(θt, φt) (11)

As a result, the overall transmit-receive beampattern is given
by

Q(θ, φ) = |wH
r u(θ, φ)|2 (12)

B. Adaptive Beampattern Design

After we obtain the target location coordinates from the
detection scan of the radar system as (θt,φt), our main goal is
to focus the power of the next beam at a spatial sector around
the target, defined by

Θ = [θt −∆1, θt + ∆1] (13)

Φ = [φt −∆2, φt + ∆2] (14)

in the elevation domain and the azimuth domain, where 2∆1

and 2∆2 are the chosen beamwidths for the target in the
elevation and azimuth domain respectively (∆1 and ∆2 should
be greater than the expected error in θt and φt respectively).
Following this approach, we obtain more accurate parameter
identifiability for the target. The derivation of the transmit
weight vector for each subarray is achieved by solving a
convex optimization problem that minimizes the difference
between the desired transmit beampattern and the beampattern
produced by the 2D array of antennas, under a constraint in
terms of uniform power allocation across the transmit antennas
[5], [7]. In this work, we consider strong clutter imposed
by an obstacle within a certain 2D spatial sector, already
estimated as Θc = [θc1 θc2] and Φc = [φc1 φc2] from
training signals. The second constraint in our optimization
problem is to restrain the sidelobe level in the prescribed
region under a certain value δ, thus minimizing the clutter
effect in our system. Hence, defining a matrix Xk = wkwHk ∈
CMtNt×MtNt , k = 1, ...,K, we formulate the optimization
problem as:

min
X1,...,XK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

Tr{ak(θ, φ)aHk (θ, φ)Xk}|

s.t.
K∑
k=1

diag{Xk} =
E

MtNt − (K − 1)
1MtNt×1

|
K∑
k=1

Tr{ak(θc, φc)aHk (θc, φc)Xk}|−δ ≤ 0, θc ∈ Θc, φc ∈ Φc

Xk � 0, k = 1, . . . ,K (15)

where Pd(θ, φ) is the desired beampattern, E is the total
available power, Tr{·} denotes the trace of a matrix, diag{·}
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denotes the diagonal of a square matrix and 1MtNt
defines the

MtNt× 1 vector of ones. We use Xk � 0, k = 1, . . . ,K to
indicate that Xk is positive semidefinite. The convex optimiza-
tion problem (15) is solved using semidefinite programming
(SDP) [10]. After obtaining the optimal solution, denoted as
X∗
k, we derive the optimal transmit weight vectors wk. If

X∗
k is of rank one, which is the ideal scenario, the optimal

weight vector wk is obtained straightforwardly as the principal
eigenvector of X∗

k multiplied by the square root of the principal
eigenvalue of X∗

k. However, if the rank of X∗
k is greater

than one, we resort to randomization techniques to obtain the
optimal transmit weight vectors [7].

Besides the transmit array, it is also important to use
adaptive techniques at the 2D receive array of the system in
order to maximize the output signal to interference plus noise
ratio (SINR). A beamformer that satisfies both the steering
capabilities whereby the target signal is always protected and
the cancellation of interference so that the output SINR is
maximized, is the Minimum Variance Distortionless Response
(MVDR) beamformer [11]. The main idea of the MVDR
beamformer is to minimize the covariance of the beamformer
output subject to a distortionless response towards the direction
of the target. Hence, it can be formulated as the following
optimization problem

min
wr

wH
r R̂yywr subject to wH

r u(θt, φt) = 1 (16)

where R̂yy = 1
N yyH is the sample covariance matrix of the

observed data samples that can be collected from N different
radar pulses. The solution to (16) is [11],

wr =
R̂−1
yy u(θt, φt)

uH(θt, φt)R̂
−1
yy u(θt, φt)

(17)

The receive weight vectors derived by (17) are employed
to design the overall transmit-receive beampattern in our
simulations.

IV. SIMULATION RESULTS

We compare the performance of the fully-overlapped 2D
Phased-MIMO radar to the phased-array and the conventional
MIMO radar schemes. We assume a 5 × 5 transmit-receive
URA with half-wavelength spacing between adjoining anten-
nas (dm = dn = λ/2, where λ is the wavelength). The
emitted orthogonal baseband waveforms from each subarray
are modeled as [12]:

ψk(t) =

√
1

T0
ej2π(k/T0)t, k = 1, . . . ,K

The target we wish to detect is located at directions θt = −30o

and φt = 60o. Furthermore, we assume one interfering target
at directions θi = 30o and φi = 90o. The 2D transmit array
is divided into 5 subarrays that are fully overlapped and each
of them consists of 21 antennas. The noise is considered as
complex Gaussian with zero mean and variance 0.1. In order

to derive the sample covariance matrix we use N = 100 data
samples.

In the first example, we use the conventional non-adaptive
beamformer to derive both the transmit and receive weight
vectors. In order to obtain the waveform diversity beampattern,
we consider the waveform diversity vector obtained by (9) as
the weight vector. As a result, the transmit, the waveform
diversity and the overall beampatterns for the 2D Phased-
MIMO radar are depicted in Fig. 2. In Fig. 3, we simulate
the same beampatterns for the phased-array radar model, by
considering the whole 2D transmit array as the only subarray
(K = 1). On the contrary, in order to simulate the conventional
MIMO radar, we set K = MtNt (each antenna of the
transmit array is considered as a subarray) and the respective
beampatterns are shown in Fig. 4. To facilitate the comparison
between the three models, Figs. 5-7 show the cross section
plotted against the elevation angle by keeping the azimuth
angle constant at 60o as well as the cross section plotted
against the azimuth angle by holding the elevation angle at
−30o for all three schemes.

(a) Conventional transmit beam-
pattern (dB).

(b) Conventional waveform diver-
sity beampattern (dB).

(c) Conventional overall beampat-
tern (dB).

Fig. 2: The beampatterns for the non-adaptive 2D Phased-
MIMO radar.

As reported for the case of the one-dimensional (1D) linear
array in [6], for the 2D array also it is evident from Figs. 5 and
6 that although the phased-array radar has the most efficient
transmit conventional beampattern due to its high transmit
coherent processing gain, it has zero waveform diversity gain.
On the other hand, the MIMO radar has flat (0dB) transmit
beampattern, but it has the most accurate waveform diversity
beampattern, because of the simultaneous emission of MtNt
orthogonal waveforms. However, it is clear from Fig. 7 that the
2D Phased-MIMO radar remarkably outperforms the phased-
array and MIMO radars in terms of the overall transmit-receive
beampattern, as it has lower sidelobes and approximates better
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(a) Conventional transmit beam-
pattern (dB).

(b) Conventional waveform diver-
sity beampattern (dB).

(c) Conventional overall beampat-
tern (dB).

Fig. 3: The beampatterns for the non-adaptive 2D phased-array
radar.

(a) Conventional transmit beam-
pattern (dB).

(b) Conventional waveform diver-
sity beampattern (dB).

(c) Conventional overall beampat-
tern (dB).

Fig. 4: The beampatterns for the non-adaptive 2D MIMO radar.

the desired target direction. Moreover, it is important to
highlight that in the case of conventional beamforming the
overall beampatterns of the phased-array and the MIMO radar
are exactly the same.

In the second example, we employ adaptive beamforming
techniques to derive the transmit and receive beampatterns.
In particular, we use convex optimization techniques to de-
termine the transmit beamformer weight vectors and the
MVDR (CAPON) based receiver beamformer for the receive

(a) Elevation cross section. (b) Azimuth cross section.

Fig. 5: Cross sections of the transmit beampattern at φ = 60o

and θ = −30o, respectively.

(a) Elevation cross section. (b) Azimuth cross section.

Fig. 6: Cross sections of the waveform diversity beampattern
at φ = 60o and θ = −30o, respectively.

weight vectors. In our simulations we assume strong clutter
at the 2D spatial sector defined by Θc = [−90o,−60o]
and Φc = [140o, 180o]. We consider δ = 0.01 (-20dB) to
restrain the sidelobe level in the clutter region. The desired
beampattern that we wish to approximate is given by (13)
and (14) where we set ∆1 = 10o and ∆2 = 20o. The total
available power for our system is equal to one (E = 1)
and the interference to noise ratio (INR) is fixed to 30dB.
The 2D transmit beampattern for the Phased-MIMO radar is
obtained by solving the optimization problem in (15) as shown
in Fig. 8a. Similarly, by solving the same optimization problem
considering the whole URA as one subarray (K = 1), we
generated the 2D transmit beampattern for the phased-array
scheme as shown in Fig. 8b. It is clear that the power allocation
of both beampatterns is concentrated in the desired space and
the sidelobe level is very low, especially over the predefined

(a) Elevation cross section. (b) Azimuth cross section.

Fig. 7: Cross sections of the overall beampattern at φ = 60o

and θ = −30o, respectively.
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clutter regions, where it has values lower than 20dB.

(a) 2D Phased-MIMO radar. (b) 2D Phased-array radar.

Fig. 8: Transmit beampatterns using convex optimization(dB).

At the receive array, the MVDR beamformer is employed to
derive the overall transmit-receive beampatterns for all radar
schemes investigated, as shown in Fig. 9. Similar to the first
example, Fig. 10 shows the cross sections of the overall beam-
patterns to help us facilitate the comparison between the three
types of radar configurations. Corresponding to the results for
conventional beamforming, it is clear from Fig. 10 that the
2D Phased-MIMO radar exploits the transmit superiority of
the phased-array model and the waveform diversity of the
MIMO scheme to result in a substantially improved overall
beampattern.

(a) 2D Phased-MIMO radar. (b) 2D phased-array radar.

(c) 2D MIMO radar.

Fig. 9: Adaptive Overall Beampatterns using MVDR beam-
former (dB).

V. CONCLUSION

We have investigated the performance of transmit/receive
beamforming within the context of 2D Phased-MIMO radar
with fully overlapped subarrays. The simulation results con-
firmed that there are substantial improvements of the overall
transmit/receive beampattern of the 2D Phased-MIMO radar
as compared to the phased-array and the conventional MIMO

(a) Elevation cross section. (b) Azimuth cross section.

Fig. 10: Cross sections of the overall beampattern at φ = 60o

and θ = −30o (adaptive beamforming).

model. In particular, it was demonstrated that the Phased-
MIMO scheme combines the transmit coherent processing
gain of the phased-array radar and the waveform diversity of
the MIMO model to produce a more efficient and accurate
overall beampattern with very low sidelobe levels. This supe-
riority is highlighted using both non-adaptive (conventional)
and adaptive (convex optimization and MVDR) beamforming
techniques.
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