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Abstract 

The ability to detect unexpected events improves dramatically 

when more than one expert is involved in decision making. 

Incongruence between two or more experts is indicative of 

something unusual and its measuring has applications in 

domains such as anomaly detection and multimodal decision 

systems. In this paper, we propose a new classifier 

incongruence measure, which overcomes the critical 

shortcomings of those existing in the literature. An 

experimental study has been carried out showing the 

advantageous properties of the proposed measure including 

its relatively low sensitivity to estimation noise, under the 

assumption of constrained Gaussian distribution. For different 

noise-free measure values corrupted with different levels of 

noise, we show that it is possible to determine classifier 

incongruence thresholds at given levels of statistical 

significance. 

1 Introduction 

 

Many data interpretation systems involve multiple classifiers. 

Examples include classifier ensembles which are designed to 

enhance the classification system performance, or multimodal 

systems, where the gain in performance is achieved by 

combining complementary sources of sensor information 

about the objects being classified, as well as hierarchical 

interpretation systems which engage low non-contextual 

classifiers the output of which is then combined at a higher 

level using contextual decision making. The information flow 

and its fusion in such multiple classifier systems can be hard 

wired. However, it is becoming evident that further 

performance improvements can be realised by intelligent 

processing of the outputs of the respective classifiers and 

associated information, such as data quality, decision 

confidence, and classifier incongruence, which can be used 

for information fusion control purposes and other 

applications.  

  

Among these control measures, classifier incongruence is a 

relatively new tool for analysing the decision making process, 

which gauges the consistency of classifier outputs. When 

incongruence is detected, it warrants further investigation, as 

normally all component classifiers should provide a coherent 

support for a particular decision.  In anomaly detection, for 

instance, incongruence of noncontextual and contextual 

classifiers may be indicative of a particular nuance of 

anomaly. For example, in speech recognition, incongruence 

between phoneme classifiers and word classifiers could 

indicate an "out of vocabulary" event [3]. In multimodal 

systems, incongruence between different modalities could 

signify a sensor failure, a spoofing attempt, or signal 

corruption. Incongruence monitoring and detection then 

provides a very useful mechanism for triggering an 

appropriate control action.   

 

Measuring incongruence involves two discrete probability 

distributions. If the two distributions are similar, then the 

classifier outputs would be considered congruent.  Hence, 

incongruence could be detected by defining a suitable 

similarity metric. This suggests that histogram similarity 

measuring techniques could be adapted for measuring 

classifier incongruence, although there are not yet any 

attempts in the literature to adopt them for this purpose. A 

comprehensive analysis of the tests that can be used for 

measuring the similarity between two histograms can be 

found in [13]. These tests are the extensions of some well-

known techniques that are mainly used for calculating the 

goodness-of-fit between an empirical and a reference 

distribution. Examples are Chi-square, Kolmogorov-Smirnov 

[4], Cramér-von-Mises [5, 6], and Anderson-Darling [7] tests. 

We will investigate the applicability of these histogram 

matching methods to the problem of incongruence detection 

in the future, but here we are focusing on the established state 

of the art methodology of incongruence detection constituted 

by the Bayesian surprise measure. 

 

The Bayesian surprise measure (BS) [1], which calculates the 

Kullback-Leibler distance between two probability 

distributions, is specifically suggested for measuring 

incongruence, and is the key existing technique used in 

practice. However, this similarity measure is decision 

agnostic as it does not ignore the terms associated with 

vestigial a posteriori probabilities of the classes that are 

unlikely to be selected by the adopted decision rules. This 

gives rise to a lot of irrelevant jitter in the final value of the 

measure. Moreover, the measure diverges to infinity and is 

dependent on the reference expert, giving two different values 

according to which classifier is selected as the reference.  

 

To overcome the shortcomings of BS, an alternative measure, 

delta (Δ∗), is proposed in [2]. This measure focuses only on  
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the most probable classes identified by the respective 

classifiers and is confined to the interval [0,1]. Furthermore, it 

is symmetric with respect to the expert selected as reference. 

However, its disadvantage is that it does not explicitly take 

into account label switching, that is when the identity of the 

most probable classes selected by the two classifiers differs. 

This may result in the delta surprise measure having higher 

values for when the most probable classes are the same, than 

when they differ. 

 

In this paper, we propose a new way of measuring 

incongruence by updating Δ∗ in such a way that the surprise 

value is magnified if the two experts support distinct 

dominant hypotheses than if they support the same. This 

measure is named as Δ𝑚𝑎𝑥. The formulation and technical 

details of Δ𝑚𝑎𝑥  are given in Section 2, and the experimental 

analysis including error sensitivity are provided in Section 3. 

Finally, in Section 4, a discussion of the findings are provided 

with conclusions drawn.  

2 An alternative incongruence measure: 𝚫𝒎𝒂𝒙 

  

Let P̃(ωj|x) and P(𝜔j|x); j = 1, … , m denote the a posteriori 

probabilities estimated by two experts (classifiers) about the 

association of input data x to class 𝜔j. Their incongruence can 

be detected by measuring the Kulback-Leibler divergence 

between their respective class a posteriori probability 

distributions, by considering the output by one of the experts 

as a reference. This measure is referred as the Bayesian 

Surprise (BS) [1] and is given as 

 

𝐵𝑆 = ∑ P̃(𝜔j|x)

𝑚

𝑗=1

log
P̃(𝜔j|x)

P(𝜔j|x)
          (1) 

 

 

 

 

 

 

 

 

 

 

 

 

BS can be interpreted as a measure of dissimilarity: High 

values of the measure suggest a big difference in the a 

posteriori probability distributions, flagging incongruence 

between the classifier outputs. The measure will tend to zero 

if the distributions are identical or similar. 

 

Although BS is the most commonly used technique for 

measuring classifier incongruence, there exist some issues 

associated with it. First of all, the measure goes to infinity for 

P(𝜔j|x) going to zero. This can bring about false alarms of 

incongruence. Moreover, BS is not symmetric in terms of 

selecting different experts as reference, as different references 

yield distinct values of surprise/incongruence. It should also 

be noted that BS accumulates contributions from all classes, 

including those that can be interpreted as noise, and therefore 

is strongly affected by estimation errors. 

 

So as to deal with the problems associated with BS, delta 

measure (Δ∗ ) was proposed in [2]. Δ∗ is symmetric, confined 

to a fixed interval  ([0,1]) and focuses on the dominant 

hypotheses flagged by the two experts, namely 𝜇 =
arg max 𝜔 P(𝜔|x) and 𝜇̃ = arg max 𝜔 P̃(𝜔|x). This eliminates 

the noise contributions from the non-dominant classes. The 

formulation of Δ∗ is given as  

 

Δ∗ =
1

2
{|P(𝜇|x) − P̃(𝜇|x)| + |P̃(𝜇̃|x) − P(𝜇̃|x)|}         (2) 

   

 

However, Δ∗ has one undesirable property. At times when 

𝜇̃ = 𝜇 (when the favoured hypotheses of the two experts are 

the same), the second term of the measure becomes identical 

to the first and causes a doubling of the difference between 

the two a posteriori probability values. This may result in 

masking the case where the two favoured hypotheses differ, 

which is more of a surprise.  

 

 

 

 (a)                                                               (b)                                                                 (c) 

 

Figure 1: Probability density functions (pdf.s) of Δ𝑚𝑎𝑥  for expert agreement on the most probable hypothesis (a), for 

disagreement (b), and for all cases (c). 3 class problems are indicated by dashed lines, and 6 class problems with solid lines. 
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In order to overcome the shortcomings of the existing 

incongruence measures, we formulate a new measure, Δ𝑚𝑎𝑥, 

as follows: 

Δ𝑚𝑎𝑥
 =  

1

2
max                                                                             (3)

{
[|P(𝜇|x) − P̃(𝜇|x)| + δ(𝜇, 𝜇̃)|P̃(𝜇̃|x) − P̃(𝜇|x)|] ,

[|P̃(𝜇̃|x) − P(𝜇̃|x)| + δ(𝜇, 𝜇̃)|P(𝜇|x) − P(𝜇̃|x)|]
}  

 

 

where the delta function (δ) is defined as equal to 0 if 𝜇̃ = 𝜇 

and 1 otherwise.  

 

Δ𝑚𝑎𝑥
  is defined as the maximum of the basic surprise over 

the two reference classifier identities, as the notion of surprise 

is dependent on the reference classifier.  It can be observed 

that the terms with the multiplier δ vanish when the two 

classifiers favour the same dominant hypothesis. This helps 

boosting the surprise value when two experts disagree on the 

favoured hypotheses. With this characteristic of Δ𝑚𝑎𝑥
 , it 

becomes preferable to Δ∗ while the advantageous properties 

of  Δ∗  such as being confined to interval [0,1] and focusing 

on the dominant hypotheses by avoiding jitter from non-

dominant classes. 

 

In Figure 1, probability density functions (pdf.s) of Δ𝑚𝑎𝑥
  are 

provided for different cases. Figure 1-a depicts the pdf.s for 

the scenarios where the two experts flag the same dominant 

hypotheses (cases of label agreement): Distributions for 3 

class problems are indicated by dashed lines, and for 6 class 

problems by the solid curve. Figure 1-b shows distributions 

for the cases of label disagreement, and Figure 1-c the 

aggregate distributions for all cases (combination of label 

agreement and disagreement). Note that the distributions are 

obtained using uniformly sampled 106 different combinations 

of classifier a posteriori probability outputs, P and P̃. 

 

 

 

 

 

 

 

 

 

It can be deduced from Equation (3) that the upper limit for 

surprise is [ 1 − ( 1/𝑚 ) ]/2 for the label agreement case, 

where 𝑚 denotes the number of classes. This value increases 

with 𝑚 and converges to 0.5 at infinity. The fact that the 

surprise upper limit and 𝑚 are directly proportional can be 

confirmed by comparing the solid and dashed lines in Figure 

1-a.  As for the case of label disagreement, high values of 

surprise can be observed to become less likely for larger 𝑚.  

 

Using the pdf. information obtained for Δ𝑚𝑎𝑥
 , we will 

experimentally analyse its statistical properties in Section 3, 

after characterising the associated  estimation noise. This will 

be followed by a discussion and a conclusion based on the 

findings in Section 4. 

3 Experimental Analysis 

In this section, we initially characterise the estimation noise 

that will be affecting the true a posteriori probabilities, P and 

P̃, and hence trigger a cumulative effect on value of the 

output surprise measure. This is followed by an experimental 

analysis that aims to investigate the statistical properties of 

Δ𝑚𝑎𝑥
  in the presence of the characterised noise. 

3.1 Characterising the estimation noise 

Let us define the estimation errors associated by the true a 

posteriori probability values, P(𝜔|x) and P̃(𝜔|x), as 𝜂𝜔(x) 

and 𝜂̃𝜔(x) and refer to their probability density functions as 

𝑞(𝜂) and 𝑞̃(𝜂), respectively. For simplicity, we will assume 

that 𝑞(𝜂) and 𝑞̃(𝜂) are normal distributions with zero mean 

and standard deviation 𝜎 while satisfying the conditions  

 

∑ 𝜂𝑖(x

𝑚

𝑖=1

) = 0          (4) 

          

and 

 

0 ≤ 𝜂𝜔(x) + P(𝜔|x) ≤ 1          (5) 

 

                     (a)                                                                                       (b) 

 

Figure 2: Distributions of noise (a) and a posteriori estimates (b) for 𝑃 = 0.1, 𝑞(𝜂) = 𝑁(0,0.1) 
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Note that the condition in Equation (5) requires the normality 

assumption for 𝑞(𝜂) to break down for a posteriori 

probabilities close to zero or one. Hence, we will assume that 

the tail of the Gaussian, which is cut off by any of these 

constraints, flips over by mirror imaging with respect to the 

line of symmetry placed at the cut-off point. The flipped tail 

is then added to the existing distribution. 

 

The resulting error distribution, 𝑝(𝜂, P), which is dependent 

on the noise-free posterior P, then becomes a folded Gaussian 

close to the boundaries (cut-off points), and approximates into 

a standard Gaussian distribution in the middle of the range, 

such that  

 

 

𝑖𝑓 P ≤ 0.5  

𝑝(𝜂, P) = {
0                                            𝜂 < P

  𝑞(𝜂) + 𝑞(−2P − 𝜂)           𝜂 ≥ −P
}   

 

 

𝑖𝑓 P > 0.5  

         𝑝(𝜂, P) = {
  0                                            𝜂 > 1 − P

  𝑞(𝜂) + 𝑞(2 − 2P − 𝜂)      𝜂 ≤ 1 − P
}      (6) 

 

 

Let us analyse an example boundary scenario to visualize 

𝑝(𝜂, P) for P = P(𝜔|x) = 0.1 and 𝑞(𝜂) = 𝑁(0,0.10). In 

Figure 2-a,  𝑞(𝜂) is represented by a thin solid line. The thick 

solid line illustrates 𝑝(𝜂, P); obtained by folding the tail of 𝑞 

at the cut-off point of – 𝑃 = −0.1, as indicated by the dashed 

line, and adding it to the unfolded distribution. On the other 

hand, in Figure 2-b, the thick solid line illustrates the 

probability density function 𝑟(𝑠(x)) of the estimate s(x) =

P(𝜔|x) + 𝜂𝜔(x). It should be remembered that 𝑟 is obtained 

as a convolution of the distributions of P and 𝜂,  that is 

 

 

𝑟(𝑠(x)) = ∫ 𝛿(𝑠(x) − P − λ)
∞

−∞

𝑝(𝜆, P)dλ          (7) 

 

 

In Figure 2-b, 𝑟(𝑠(x)) can be observed to satisfy the 

condition in Equation (5). Finally, the thin line in Figure 2-b 

is provided for convenience and depicts what 𝑟(𝑠(x)) would 

look like if the constraint in Equation (5) did not exist. 

 

The probability estimation errors will accumulate estimation 

errors on any surprise measure. Due to the fact that the 

proposed surprise measure, Δ𝑚𝑎𝑥
 , involves summation over at 

most two classes, it should be considered as more robust to 

noise compared to BS, which is formulated as a sum 

involving all classes.  

3.2 Statistical analysis of  𝚫𝒎𝒂𝒙
  

In this section, we conduct empirical studies of the effect of 

the a posteriori class probability estimation errors on the 

distributions of Δ𝑚𝑎𝑥
 , using noise as characterised in Section 

3.1 

 

We parameterise scenarios by varying noise-free surprise 

measure values, and for each choice, study the impact of 

noise: For a given noise-free surprise measure value, all 

possible pairs of the probability distributions 𝑃 and P̃, which 

output this value in Equation (3), are recorded. In our 

experiments, these pairs are selected from a pool of 106 

combinations for 3 and 6 class problems. The process of 

selecting probability distribution pairs involves the cases of 

label agreement and disagreement in the most probable 

hypothesis. This is so as to account for δ = 0 and δ = 1 as 

given in Equation (3).  

  

On the selected P and P̃ pairs, addition of noise is then carried 

out. Noise terms are drawn from the distribution 𝑝 as given in 

Equation (6). Note that in these experiments, σ is set to 0.10. 

The resulting distributions of noisy Δ𝑚𝑎𝑥
  (denoted as Δ̃𝑚𝑎𝑥

 ) 

are obtained from the corrupted P and P̃.  

(a)                                       (b) 

Figure 3: Pdf. curves of  Δ̃𝑚𝑎𝑥
   for the label agreement 

case, obtained for Δ𝑚𝑎𝑥
 = 0.2, corrupted by noise 𝑝(𝜂), 

for 3 class problems (a), and 6 class problems (b) 

 

                (a)                                              (b) 

Figure 5: Pdf. curves of Δ̃𝑚𝑎𝑥
  for the label disagreement 

case, obtained for Δ𝑚𝑎𝑥
 = 0.7, corrupted by noise 𝑝(𝜂), 

for 3 class problems (a), and 6 class problems (b) 

 

(a)                                           (b) 

Figure 4: Pdf. curves of Δ̃𝑚𝑎𝑥
  for the label disagreement 

case, obtained for Δ𝑚𝑎𝑥
 = 0.2, corrupted by noise 𝑝(𝜂), 

for 3 class problems (a), and 6 class problems (b) 
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Using the Δ𝑚𝑎𝑥
  distributions provided in Figure 1, a few 

representative (noise-free) Δ𝑚𝑎𝑥
 values have been selected to 

perform the analysis. In the initial set of experiments, 

probability distribution functions of Δ̃𝑚𝑎𝑥
  are obtained for the 

label agreement case where Δ𝑚𝑎𝑥
 = 0.2 and the results are 

depicted in Figure 3-a and Figure 3-b for 3 and 6 class 

problems respectively. Similarly, Figure 4 presents the results 

for the label disagreement case for  Δ𝑚𝑎𝑥
 = 0.2, and Figure 5 

for Δ𝑚𝑎𝑥
 = 0.7. Note that the distributions illustrated are 

approximations acquired from discrete observations. 

 

An interesting observation can be made from these results 

about the effect of the number of classes, 𝑚, on the surprise 

measure distributions obtained. For both surprise measures 

and all scenarios of label agreement and disagreement, it is 

shown that the distributions are less likely to have realisations 

towards both ends of the [0,1] range for 𝑚 = 6 compared to 

𝑚 = 3. However, the amount of shift towards the ends of the 

range for different 𝑚 is dependent on specific values of noise-

free Δ𝑚𝑎𝑥
  values; e.g. for the disagreement case, the 

difference is high when Δ𝑚𝑎𝑥
 = 0.7 whereas it is low for 

Δ𝑚𝑎𝑥
 = 0.2. 

 

It is important to note here that in practice, we will not know 

the characteristics of the underlying scenarios, i.e. the exact 

values of (P, P̃) pairs that generate a particular Δ𝑚𝑎𝑥
 . A 

practically more useful analysis, we should integrate over the 

various scenarios while taking their prior probability of 

occurrence into account. This analysis can be accomplished 

by obtaining a plot of the area under the tail of the Δ̃𝑚𝑎𝑥
  

distribution as a function of threshold. 

 

The rationale for this integration can be explained using a 

simple example. Looking at Figure 3-a, it can be observed 

that using a threshold of 0.6 for surprise detection can leave 

an important portion of some distribution curves out and 

cause false alarms. However, it turns out that the cases with 

large under-the-tail areas for this threshold are not likely to 

occur with high probability, e.g. they only happen when the 

estimation noise causes a label change. In others words, the 

contribution of these cases to the probability of false alarm is 

expected to be low, and this can only be evaluated by a 

 

cumulative analysis involving the likelihoods of  scenario 

occurrence. 

 

In this set of experiments, the average size of the upper tail 

area of  Δ̃𝑚𝑎𝑥
  pdf.s obtained from the 106 many (P, P̃) pairs 

is calculated for given threshold points. This is achieved by 

taking the likelihood of the distributions into consideration. 

Note that the estimates of the area under the tail are 

parameterised by noise level. 

 

In Figure 6 and Figure 7, the resulting graphs depicting upper 

tail area (% over the total area)) versus threshold are given for 

3 and 6 class problems respectively. In each figure, the graphs 

in the first column correspond to the case of label agreement, 

whereas the second column applies to disagreement. Note that  

𝜎 = 0.1 and the results for different fixed noise-free surprise 

values are shown using different line types. 

 

A comparison of Figure 6-a with Figure 7-a shows that for 

any fixed surprise threshold, the upper tail area size is greater 

for 3 class problems (𝑚 = 3) compared to 6 classes (𝑚 = 6) 

in the label agreement case. This observation is valid for all 

noise-free Δ𝑚𝑎𝑥
  values. 

 

For the case of label disagreement, let us analyse, for 

instance, the scenario in which noise-free Δ𝑚𝑎𝑥
 = 0.5 by 

comparing Figure 6-b and Figure 7-b. It has been previously 

shown in Section 2 that the spread of the surprise distribution 

towards both ends of the [0,1] range is greater for 𝑚 = 3 than 

for 𝑚 = 6. This characteristic is also reflected in the 

respective area under the tail curves. For example, for the 

threshold 0.6, the upper tail area is just under 0.2 for 𝑚 = 3, 

whereas it is close to zero for 𝑚 = 6 .  

 

In Figure 6-a and Figure 7-a, a threshold greater than or equal 

to 0.7 can be observed to cover more than 90% of the lower 

tail areas for the label agreement cases in all scenarios. This 

means that almost all scenarios, which incorporate classifier 

agreement in the most probable hypothesis, will be perceived 

as congruence. Looking at Figure 7-b and Figure 7-b to 

analyse the case of label disagreement, we can see that in 

order to be able to label the scenarios with noise-free  

 

              (a)                                                                                                     (b) 

 

Figure 6: Upper tail area size versus  Δ̃𝑚𝑎𝑥
  threshold for different noise-free Δ𝑚𝑎𝑥

 . Given for 3 class problems under the 

scenarios of classifier label agreement (a) and disagreement (b) 
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Δ𝑚𝑎𝑥
 = 0.7, 0.8 as incongruence with ∼ 90% confidence, a 

smaller threshold (e.g. a threshold around 0.5) is required. As 

𝑚 decreases, the minimum value of the threshold needed to 

cover incongruent scenarios resulting from high Δ𝑚𝑎𝑥
  also 

increases. Note that this finding is in line with the 

observations on the spread of surprise distribution depending 

on 𝑚 as given above. 

 

These experiments suggest that it is possible to effectively use 

the proposed surprise measure for incongruence detection 

with a choice of a suitable threshold according to the nature 

of the problem, and shed light on how to select a threshold. 

The use of a threshold greater than 0.7 is suggested for 

problems where the true negative rate is of importance, and a 

smaller threshold closer to 0.5 should be preferred for systems 

requiring low false positive rates. 

4 Conclusions 

In this study, the problem of classifier incongruence detection 

for multiple classifier systems has been addressed. We have 

pointed out the disadvantages and deficiencies of the existing 

methods used for measuring classifier incongruence, and 

proposed the use of a new measure to overcome these 

problems. An experimental study of the proposed Δ𝑚𝑎𝑥
  

measure has been conducted to investigate its statistical 

properties under the presence of estimation noise. The study 

was carried out for various scenarios defined in terms of the 

noise-free measure values. The area under-the-tail of the 

distribution of the Δ𝑚𝑎𝑥
  measure parameterised by various 

thresholds has been calculated to guide the selection of a 

suitable incongruence detection threshold. 
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Figure 7: Upper tail area size versus  Δ̃𝑚𝑎𝑥
  threshold for different noise-free Δ𝑚𝑎𝑥
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