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Abstract—Many natural signals exhibit a sparse representation,
whenever a suitable describing model is given. Here, a linear gen-
erativemodel is considered, where many sparsity-based signal pro-
cessing techniques rely on such a simplified model. As this model
is often unknown for many classes of the signals, we need to select
such a model based on the domain knowledge or using some exem-
plar signals. This paper presents a new exemplar based approach
for the linearmodel (called the dictionary) selection, for such sparse
inverse problems. The problem of dictionary selection, which has
also been called the dictionary learning in this setting, is first refor-
mulated as a joint sparsity model. The joint sparsity model here
differs from the standard joint sparsity model as it considers an
overcompleteness in the representation of each signal, within the
range of selected subspaces. The new dictionary selection para-
digm is examined with some synthetic and realistic simulations.

Index Terms—Sparse approximation, dictionary learning, joint
sparsity model, union of subspaces model, projected gradient
method.

I. INTRODUCTION

T HE sparse signal model is one the most successful low-
dimensional signal models for modern signal processing

applications [1]. In this model, any considered signal ,
can be represented as the sum of a few elementary functions,
called the atoms, plus some noise , as follows,

where , called the dictionary, is the collection of the
atoms and is a sparse vector. In this setting, is often
called a sparse signal in . The additive noise is used to consider
the inaccuracy of the measurement device or the model mis-
match. While choosing an overcomplete dictionary, i.e., ,
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gives us a flexibility to choose sparser representation, the extra
redundancy can be damaging in ducking failures coefficient re-
covery. Therefore, the success of sparse signal models depends
on how well we choose a redundant , which is the main focus
of this paper.
There is a lot of interest in building redundant dictionaries

to make more flexible models and various techniques have al-
ready been proposed to design the dictionary using some do-
main knowledge, see for example [2], or learning the dictio-
nary using a given set of exemplars [3], see [4] and [5] for a
more complete review on different dictionary selection tech-
niques. The advantage of the first approach is the possibility of
incorporating already known signal structures and often fast im-
plementation of the dictionary. The second approach does not
need such prior information about the signals, but they often
find an unstructured dictionary with a computationally expen-
sive implementation. We will combine these two methods in
this paper, by considering a large set of potentially good atoms

, called a mother dictionary here, and se-
lecting a smaller set of atoms as the final dictionary . Fast im-
plementation of such dictionaries are guaranteed, if the mother
dictionary has such a property. For instance, scalar products of a
given signal with a family of Gabor atoms of length can be
implemented with a computational complexity of .
Also, as we restrict the search space to the dictionaries with
mother atoms, it can be learned using much less exemplars.
In other words, restricting the dictionary to a subset of mother
atoms, regularizes the dictionary learning problem and reduces
the necessary amount of training data.
As all the atoms of exist in , any sparse signal in ,

can be represented using . The reader may ask, if we can use
the large dictionary , why we need to shrink it to find a dic-
tionary which at best can only sparsify the signal to the same
level. The answer to this question can be given by noting that,
finding the sparse approximations have non-polynomial com-
plexity, in a general setting. The success of practical sparse ap-
proximation algorithms depends on some internal structures of
the dictionary, including mutual coherence [6], Restricted Isom-
etry Property (RIP) [7] or the null-space property [8]. Dictionary
size indirectly affects these properties such that larger dictio-
naries mostly make the sparse recovery more difficult. Roughly
speaking, it is caused by the fact that by putting more atoms in
the dictionary, the atoms become more similar. Such similari-
ties between different atoms, indeed make it more challenging
to findwhich set of atoms represents the signals more accurately,
i.e., the problem of exact (support) recovery. The approximation
in such large dictionaries would also be noise sensitive, as small
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noise may cause the wrong atoms to become selected. Finally,
in coding, the cost of indexing which atoms being used in the
representation , a.k.a. the binary significance map, grows by
increasing the dictionary size.

A. Related Work

The problem of dictionary design by combining the atoms of
a mother dictionary was considered in [9]–[11]. In this setting,
an auxiliary sparse matrix combines the mother atoms, to gen-
erate a dictionary which fits the given learning samples. The size
of dictionary is fixed here and as the learned dictionary is the
multiplication of a sparse matrix and a structured matrix (with
a possibly fast multiplication), we can implement such a dictio-
nary in two steps, where each of them are cheaper than .
The dictionary selection problem can be interpreted as a partic-
ular case of sparse dictionary learning, when the sparse matrix
can have only non-zero elements, with one non-zero on
each row.
The problem of learning a dictionary, when the size of dic-

tionary is not given, has been investigated in [12]. The dictio-
nary selection problem has also a similar approach, by finding
smaller size dictionaries from the given larger reference dictio-
naries. The difference is that the reference dictionary is fixed
throughout the learning here, which allows us to handle sig-
nificantly larger problems and find some computationally fast
dictionaries.
The dictionary selection, which will be considered in this

paper, is also related to the problem of subset selection in ma-
chine learning [13], [14], where the goal is to select the most rel-
evant subset, which describes the whole set. Reference [13] uses
the fact that such a model selection can be formulated as a sub-
modular cost minimization. For such a formulation, there exist
some canonical solvers, which guarantee to find a neighborhood
solution. The derived neighborhood is indeed not small, which
motivated Das and Kempe [14] to present an alternative sub-
modular formulation to reduce the approximation error.

B. Contributions

We here choose a different path to the mentioned dictionary
selection techniques in previous section, by reformulating the
problem as a generalized form of joint sparse representation
problem [15], [16]. To the authors’ knowledge, it is the first time
that the dictionary selection problem is modelled in this way.
In this model, representation of each signal is not only -joint
sparse, it is also -sparse in the selected joint sparsity support.
We here assume , which makes the representation of each
signal in the selected -joint support, non-unique, where -spar-
sity constraint can help to find the correct representation.
Based on the new signal model, we need to solve a quadratic

objective. As the signal model and the objective include un-
bounded solutions, we need to investigate the conditions that
the problem is well-defined. Such an analysis is useful for the
convergence study of any algorithm for solving the problem.
The boundedness and uniqueness of the solutions of the intro-
duced optimization problem are also investigated in this paper.
As the dictionary can be found using the active rows of the

coefficient matrix of the introduced optimization program, we
need to practically solve a non-polynomial time complexity

problem. We here introduce a technique, which is inspired
by the Iterative Hard Thresholding (IHT) for sparse approx-
imations [17], [18], to find such an active set of atoms. IHT
is an iterative method that at each iteration, thresholds the
coefficient vector, after updating in the gradient direction. The
algorithm is equipped with a line-search technique to guarantee
the monotonic decrease of the (positive) objective. With some
numerical experiments, the new approach is shown to recover
the exact dictionary, in a large range of sparsity/overcomplete-
ness parameters.

C. Paper Organization

We initially formulate the dictionary selection problem as an
overcomplete joint sparse representation problem in Section II.
We then introduce an iterative algorithm to solve the problem
approximately in Section III and show some dictionary recovery
results with the synthetic data simulation in Section IV. We also
show some simulation results on the Curvelet and harmonic
based sub-dictionary selections, respectively for the finger print
and audio data in this section. The paper will be concluded in
Section V.

II. MATHEMATICAL MODELING

Let be a matrix made by training samples
and be a mother dictionary

of normalized atoms . We assume that the generative
dictionary is made by a subset selection
of atoms in , i.e., where and

. We assume that each is approximately generated by
a -sparse coefficient vector ,

with respect to the Euclidean metric, i.e.,
. We want to find a dictio-

nary that fulfils the two (apparently contradictory) objectives:
few elements in the dictionary, and sparsest decomposition
for each signal. In other words which is both small and
efficient! The problem of dictionary subselection can thus be
defined as finding the index set meeting those criteria,
given and . Let be a coefficient matrix
and be the mapping that assigns the
corresponding atom index of to the th component of . By
assigning , while
the other elements of are set to zero, the generative model
can be reformulated as,

(1)

with respect to the canonical Euclidean metric, i.e.,
. As is -sparse in each column

and -row-sparse, i.e., only rows of have non-zero compo-
nents, it lies in the intersection of the following sets,

(2)

(3)

where is the th column of , with
and is the th row of . In other words, sets and
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are the sets of by matrices which respectively have
non-zero elements on each column and non zero rows. The
class of signals which can be represented with some coefficient
matrices in , is called here the -(overcomplete) joint
sparse signals. We actually combine the coefficient matrix and
the dictionary parameters, i.e., the index set of optimal dictio-
nary, in a single matrix , where the optimal atom indices are
specified by the locations of non-zero rows of .
The optimal dictionary , which can alternatively be indi-

cated by , is defined as the solution of the following problem,

(4)

can actually be found using the solution of (4), by selecting
the atoms of which have been used at least once in the repre-
sentation of . This formulation has some similarities with the
convex formulation of Friedman et al. [19], where they com-
bine the convex and penalties to promote an overcomplete
joint sparsity model. The alternative formulation (4), used in this
study, has the benefit of being directly related to the size- dic-
tionary selection problem. Furthermore, the associated iterative
algorithm, as presented in Section III offers a complexity that
scales well with the dimension of the problem, that can be large
in many practical problems.

A. Boundedness and Uniqueness of the Solutions

The constraint set is unbounded. This means that for
any given finite value , there exists at least a point
such that . It is necessary to find a condition
which guarantees the boundedness of the solution of (4). Such
a condition is given in Lemma 1. To prove this lemma, we use
the following proposition.
Proposition 1: Let be an open ball centred at

the origin, with the radius , defined by
. For a given , if

(5)

there exists a finite radius such that,
,

Proof: is a (linear) subspace of and
is a union of subspaces [20], which intersect at the origin. The
shortest distance between a given non-zero point in
and is non-zero, as is the only point in
. This distance becomes larger, with , for increasing

. Therefore, there exists a radius , which any point in
, located outside of , is at least away from the closest

point in .
Lemma 1: Let the null space of the operator , in the space

, be noted by . The set of all solutions of (4) is bounded
if and only if .

Proof: Let be a solution of (4) and and respec-
tively be the projection of onto the null-space and range of
. As , we only need to show that

and are bounded for any solution of (4)1. As
the matrix , any solution of (4) should then have
smaller objective than this matrix. We can then have,

where is theminimum (non-zero) singular value of . This
induces , which is the boundedness of

.
We respectively denote and as the support index of ,

i.e., , and its complement. The matrix
(respectively ) is a matrix which is equal to on the support
index (respectively on the complement of support index) and
zero on the other indices. The solution is zero on the indices
specified by , i.e., . , shows
that . On the other hand,

which assures the boundedness of . We finally need to
show that is also bounded. Momentarily assume that
is unbounded. is in and . As

is unbounded when is unbounded, we can use Propo-
sition 1 with as follows,

which contradicts with the fact that .
Therefore the assumption of unboundedness of is incor-
rect, which complete the proof of boundedness of .
If (5) is not valid, we have a non-zero in the

null space of , which is also overcomplete joint sparse. This
means that any non-zero -joint sparse solution , with the
same support as , generates another solution of (4) given by

, for any , which lies in , since and
share the support. Hence, can be chosen arbitrary large, which
shows that the set of all solutions of (4) cannot be bounded.
It is generally difficult to check (5) for a given mother dictio-

nary. However, if the mother dictionary is in a general position,
when the dimension of signal space is larger than the sum of
the dimension of null space and each subspace ,
which means , the Lebesgue measure of the lhs of (5) is
zero.
Although this lemma shows the boundedness of the solutions,

it does not provide any explicit bound for the results. It means
that if the subspace is very close to one of the subspaces
in can become very large.
The reader may notice that from the optimality of in the

proof of Lemma 1, we only used the fact that the objective at

1We here show that Frobenius norm of is bounded, which induces the
boundedness of .
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is less than the objective at . Therefore we can easily ex-
tend this lemma to ’s which are not the optimal solutions, but
satisfy a similar condition and derive the boundedness of the
search space.
Corollary 1: The set

is bounded if (5) is true.
It is always useful to know when an optimization problem

like (4), has a unique solution. This is particularly useful in the
dictionary design problem, as the other formulations often have
multiple solutions. This is caused by the fact that any permu-
tation of a dictionary is also a solution for the problem. This
indeed makes the convexification of the problem much more
challenging.
We can use a general theorem of the Union of Subspaces

(UoS) model to show the injection of the mapping . In the
UoS signal model, we assume that, while a given class of sig-
nals spans the whole space, each signal (approximately) lies
in a low-dimensional subspace. The UoS model is a general
and useful model for many sampling and signal processing ap-
plications. Here, we only consider a finite union of subspaces
model. For more information and extensions to other types of
UoS model, please see [21]. Reference [21] expresses that:
Theorem 1 (Th. 2.6 of [21]): Let be a union of subspace,

equipped with a proper measure. Almost all linear maps
are one to one on almost all elements of , when-

ever , where and respectively are
the (maximum) dimension of each subspace and the maximum
dimension of the union of two subspaces of .
In our setting, if , almost all linear maps

, with , are one to
one on almost all elements of the -joint sparse matrices.
is a diagonal matrix with on the main diagonal. Interested

readers may notice that the derived condition, i.e., , is
indeed the sufficient condition for the lhs of (5) to have zero
measure.
We now derive a sufficient condition for the uniqueness of the

solution in a deterministic sense. It is indeed a particular case of
the uniqueness results for the UoS model [20]. The one to one
map of an operator , i.e., invertible sampling, is
defined as,
Definition 1 (Def. 2 in [20]): We call an invertible sam-

pling operator for a union of subspace , if each is
uniquely determined by its sampling data ; that means for
every and in ,

With this definition we can derive a sufficient condition for the
uniqueness of the solution of (4) as follows,
Lemma 2: Let and

and
The optimization problem (4) has a

unique solution if

(6)

Proof: Let the solution not be unique and we have and
as two distinctive solutions of (4).We have

, which means . As
and , it should be , which gives and
it contradicts with the fact that they are distinctive solutions.
Remark 1: Note that Lemma 2 presents a sufficient condi-

tion for the uniqueness of the solution, which is different to the
standard k-sparse and p-joint sparse UoS models. Similar to the
general form of block-sparse model, this is caused by the fact
that some of the sparsity patterns in cannot be divided
to two disjoint sparsity patterns in .
Remark 2: The boundedness of the solutions of (4) needs a

weaker condition than its uniqueness. We can actually use the
uniqueness condition of Lemma 2 to show the boundedness of
the solution.

B. Number of Subspaces

It was mentioned that the introduced signal model is a UoS
model, as fixing the support coefficient, generates a low-dimen-
sional subspace of the . We are restricting the set of ma-
trices which are -sparse on each column, to the matrices which
are also -joint sparse. Such a restriction reduces the number
of admissible subspaces, which increases the robustness of the
mapping on its domains. In practical applications, we need
some robustness to the noise and model mismatches for a suc-
cessful sparse recovery. This is indirectly related to the distance
between each two distinct points, after mapping. If two points
have some small distance after the mapping, the embedding is
sensitive to the noise. A measure which characterizes such a
robustness is the restricted isometry constant for each UoS
model [7]: A large ensures a more robust embedding. We refer
the readers to [7] for more information about the definition and
implication of the restricted isometry constant.
Based upon ([21], Corollary 3.6), a necessary number of mea-

surements to have a robust embedding with a particular , has a
lower bound, which is proportional to and inversely pro-
portional to , where is the total number of sub-
spaces, is a function of and is the subspace separation
of the proposed UoS ([21], (18)). decreases by restricting
the UoS to a subset of the original UoS. We therefore reduce
the necessary number of training samples in this context, by de-
creasing . In the following, we characterize the reduction in
the number of subspaces, using the proposed UoS model, in the
comparison with the -sparse signal model.
When the matrix is -sparse on rows, we have times

options to choose the support. The number of subspaces is thus
. If we also restrict the matrices to be -joint sparse, we

choose positions for each row, within the selected rows. We
have therefore subspaces. To quantify exponential re-
duction in the number of subspaces using the -joint spar-
sity model, we approximate , defined as,

(7)

To find some upper and lower bounds for , we use the concept
of binary entropy from Information Theory, which is defined
as follows,

(8)
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Fig. 1. for different , when , and . is shown by
the solid line and the bounds for are shown with error bars; see (10).

where is the probability of a binary number. We can
now bound as follows ([22], (12.40)),

(9)

Using the similar bounds for and , and after some
simple algebraic manipulations, we can derive a bound for
as follows,

(10)

where If we
replace the binary entropy in , we can derive an
explicit formulation for as follows,

(11)

As (10) depends on many parameters, it is hard to figure out
the reduction in the number of subspaces from . To demon-
strate this better, we can fix and , and plot
based on , which is an approximation for , and showing

the bounds of (10) with some error bars. If we choose
and , the bounds for are plotted as func-

tions of in Fig. 1. As is the ratio between the number of
subspaces in the new model and -sparsity model, we can see
that ratio is significantly reduced for large . In other words, the
search space for the solution is now much smaller, which may
boost the exact recovery using practical recovery algorithms, as
we can see in the simulation section.

III. A PRACTICAL OPTIMISATION ALGORITHM

Although the objective of (4) is quadratic, the optimization
of (4) subject to the non-convex constraints and , is not

easy. Most of the efficient optimization techniques cannot be
used in this setting. A powerful technique, called the projected
gradient, can be used when the projection onto the admissible
set is available. In the space of real matrices , the projec-
tion of a point onto a closed set is defined
by , where is the norm
of the proposed space. We use the Hilbert–Schmidt, or Frobe-
nius, norm here, as it is more related to the quadratic objective
(3), i.e., using the same normed space, and we can analytically
find the projection. In this setting, a projection onto can be
found by keeping the largest coefficients of each column and
letting the others be zero. The projection onto can be found
by keeping the rows of with the largest maximum absolute
values and letting the other rows be zero. Sadly, the projection
onto the intersection of and is not analytically possible,
the projected gradient algorithm cannot be used in its canon-
ical form. A property of the admissible sets and is that the
consequent projections of a point in these sets provide a point
in the intersection of them, which may indeed not necessarily
be the projection onto . The following lemma shows that
alternating projection onto and converges in a single con-
secutive projections, i.e., two projections in total.
Lemma 3: Let be a matrix in . The following two

statements hold,

(12)

Proof: Projections of onto or shrinks some of ’s
non-zero elements to zero and does not produce any further non-
zero elements. This simply shows that the projection of a point
in , onto , gives a new point which is still in . It assures the
first statement. The second statement can be shown similarly.
Remark 3: According to Lemma 3, although includes

and , for any , it does not induce that
these operators are identical. We practically found that using

works better for the purpose of this paper.
Remark 4: The sets and are non-convex and the projec-

tion onto each of these sets may thus be non-unique. In this case
we can randomly choose one of the projections.

A. Overcomplete Joint Sparsity Dictionary Selection
Algorithm (OJSDS)

We use a gradient based method which iteratively updates
the current solution , in the negative gradient direction and
maps onto a point in , to approximately solve (4). If

, the gradient of can be found as
follows,

(13)

An important part of the gradient descent methods, is how
to select the step size. An efficient step size selection technique
for unconstrained quadratic minimization problems, with objec-
tives like , is to use half of the spectral radius of linear op-
erator, here , as follows,



4552 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 17, SEPTEMBER 1, 2014

Algorithm 1: Alternating Projected Gradient for Dictionary
Selection

1: initialization:
and

2: while do
3:

4:

5:
6: if then
7:
8: end if
9: if then

10: while do
11:
12:
13: end while
14: end if
15:
16:
17:
18: end while
19:
20: output:

Such a step size is optimal for the first order gradient descent
minimization of the unconstrained problem with the quadratic
objective . In a constrained minimization scenario, we can
choose a similar initial step size and shrink the size, if the objec-
tive increases. It thus needs an extra step to check that the objec-
tive is actually not increased after each update of the parameters.
A more clever initial step size was selected in [18] for the sparse
approximations of -sparse signals. If the support of sparse co-
efficient vectors are fixed, i.e., the overall projection steps do
not change the support, the update is only in the direction which
changes current non-zero coefficients. When the problem size is
shrunk to the space of current support, the problem is quadratic
and the step size can be similarly calculated using the gradient
matrix , constrained to the support, as follows,

where is the gradient matrix masked by the
support of , as follows,

A pseudo-code for the algorithm is presented in Algorithm 1.
The condition which is checked in line 10, guarantees that the
algorithm reduces the objective by updating the coefficients. As
the dictionary selection algorithm 1 is based upon a gradient
projection type technique, the learned dictionary may be more
suitable for such greedy sparse approximation techniques. How-
ever, the simulation results show that the reference dictionary
can be recovered using this algorithm, given a rich set of training

samples. If the real signal is sparse and the dictionary satisfies
the exact recovery conditions, the dictionary is thus optimal for
any sparse recovery algorithms.
In the following theorem, we prove that Algorithm 1 is nu-

merically stable and the generated sequence has limit points.
Theorem 2: Let be a bounded initial point.

The gradient based method of Algorithm 1, generates a bounded
sequence of solutions, which accumulate.

Proof: As the algorithm reduces the objective at each iter-
ation, the search space is a bounded subset of , based upon
Corollary 1. is a closed set, the search space is then a com-
pact subset of . The sequence generated by Algorithm 1,
lives in a compact set, which is enough to have bounded accu-
mulation points, based on the Bolzano-Weierstrass theorem.

IV. SIMULATIONS

In the first experiment, a dictionary was ran-
domly generated using a normal zero mean distribution with
unit variance and normalized to have unit -norm on each
column. The target dictionary was generated by
randomly selecting atoms of . A number of
-sparse coefficient vectors (with ), were generated by
randomly selecting the support, with a uniform distribution of
the magnitudes in and random signs. A set of training
matrix of length were generated using the generative
model and randomly generated sparse vectors. To recover the
reference dictionary , given and , we used a gradient
descent based algorithm similar to Algorithm 1, with three
different admissible sets, and demonstrate the advantages of the
proposed technique. We first used from (2) and no constraint
on the row-sparsity of the coefficient matrix and showed
the recovered support of the sparse matrix in the left panel (a)
of Fig. 2. If we only assume joint sparsity model and use
from (3) as the admissible set, we find the coefficient matrix
whose support is shown in the middle panel (b) of the same
figure. Using both constraint sets, as explained in Algorithm
1, provides a coefficient matrix whose support is shown in the
right panel. The correct is shown in these plots using some
grey lines. It is clear that the proposed projected gradient onto
both sets can correctly recover , where the other two methods
have some errors in the recovery.
This experiment can be repeated for different and

by selecting a range of and ’s, while keeping
and fixed. If we repeat the simulations 100 times for each
setting and calculate the average exact dictionary recovery, we
can plot the phase transition for each methods. We have plotted
such phase transitions in Fig. 3, with sparsity constraint in (a),
joint sparsity constraint in (b) and proposed constraint in (c).

The black color means high exact dictionary recovery. The area
with exact recovery in (c) is larger than the same areas in (a)
and (b) added together. This clearly demonstrates the relevance
of the new framework.
In the next set of experiments, we will select a subset of the

Curvelet [23] dictionary for the sparse representation of fin-
gerprints. We chose a Curvelet transform for the image size
64 by 64. The mother dictionary is roughly
2.59 times overcomplete, which we want to shrink to half size,
i.e., . This is indeed a large scale dictionary
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Fig. 2. Dictionary selection results using (a) , (b) , and (c) as admis-
sible sets. The black dots in each plot indicate non-zero coefficients. In plot (b),
as dots are very populated, we observe solid horizontal lines. Gray horizontal
lines are plotted as a guideline, for the correct dictionary.

Fig. 3. Phase transition using (a) , (b) , and (c) as admissible sets.
The black area indicates successful recovery of the dictionary.

learning problem, which is difficult to solve in a standard dic-
tionary learning setting. With the help of the proposed method,
we can handle such a big dictionary selection process, as we
need fewer training samples, only need to keep a sparse matrix,
i.e., sparse representation matrix, in the memory and use the
fact that the mother dictionary has a fast implementation. We
assume the sparsity of each image patch is
and . We used two different settings here to choose the
dictionary, a) -joint sparsity model and b) -overcomplete
joint sparse model. The simulations were done in the Matlab en-
vironment, on a 12-core, 2.6 GHz linux machine, which respec-
tively took 72 and 90 seconds to learn and . Another
fingerprint image was used to test the selected dictionaries. The
original image and the sparse representation of the original
image with are shown in the first row of Fig. 4. The -sparse
representation with the learned ’s are shown in the second row
of this figure. The left image is the representation with learned
, when the model was -joint sparse and the right image is

the same, but with , where the -overcomplete joint
sparse model was incorporated. As we can see the PSNR of
the representation with the shrunk dictionary is slightly

Fig. 4. The original image (top left), the sparse representation of the original
imagewith the dictionaries, (top right), (bottom left), and (bottom
right).

Fig. 5. The bottom-right quarter of the images shown in Fig. 4, in the same
order.

better than the other. We can also see the bottom-right quarter
of these images in Fig. 5, in the same order. The sparse re-
constructed images are actually denoised and the reconstructed
image using is more similar than to the image recon-
structed using .
We setup a new experiment with audio signals to demonstrate

the performance of the proposed dictionary selection algorithm
in comparison with the fixed dictionaries and another dictio-
nary learning methods. To this end, we used some recorded
audio data from BBC radio 3 (mostly classical musics), and
down-sampled the signals at a sampling rate of 32k samples
per second, as there is very little energy above 16 kHz. We ran-
domly selected a frommore than eight hours of
recorded audio. A three times overcomplete mother dictionary
was generated using a two times frequency oversampled DCT
plus the Delta Dirac transform, i.e., identity matrix. The reason
for such a selection is to incorporate the temporal and harmonic
properties of the audio. There has been a question on how useful
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can be to combine such dictionaries and how many DCT atoms
are necessary. We thus found a subset, i.e., , of
the mother atoms. If we run the proposed dictionary selection
algorithm with , for iterations, and plot the
frequency of appearance of the mother atoms in , we get the
plot of Fig. 6. The low-frequency DCT atoms have been used
most, while high-frequency DCT atoms have not been selected
in . Although there is no regular pattern for the selected delta
Diracs, it is clear that some Dirac atoms close to the boundary
of the window have been selected, i.e., close to the atom indices
2048 and 3072. If we plot the errors of representing a set of
test data , which is randomly selected from the
same audio database, through out the iterations, we get the plots
of Fig. 7. The errors corresponding to using the mother and
two times overcomplete DCT dictionaries, are also shown for
the reference with solid and dash-doted lines, respectively. The
final SNR using the selected dictionary is 26.43 dB, which is
slightly worse than using the mother dictionary, i.e., 26.53 dB,
but is also significantly better than using the two times over-
complete DCT, i.e., 25.96 dB. For a comparison, we also ran
the sparse dictionary learning [10], with the same training data
samples. The reason for selecting this dictionary learning algo-
rithm is that it has some similarities with the proposed frame-
work here, and it provides a relatively fast dictionary, i.e., an
extra sparse matrix-vector multiplication is also necessary. In
the sparse dictionary learning, we used the same mother dictio-
nary we used earlier, the objective multipliers and
ran the simulations for 1000 iterations. The errors of using the
sparse learned dictionary is shown by the dotted line in Fig. 7.
The final SNR is not as good as when we use other dictionaries.
As one aim of the proposed dictionary selection method is to
provide a fast dictionary, we also measured the average calcula-
tion time of the forward and backward applications of on the
same desktop machine as previous experiments, while using a
single core of the processor, for a fair comparison. The applica-
tion of subselected dictionary and , using a regular ma-
trix-vector multiplication and a fast operator implementation,
are shown in Table I. This table shows that, using a fast selected
dictionary, speeds up the practical sparse approximation algo-
rithms, as applying the dictionary and its transposed, often are
the most computationally expensive parts of such algorithms.
Learning a dictionary in the settings of previous experi-

ment, using the canonical dictionary learning algorithms, e.g.,
K-SVD, MOD and MMDL [4], needs a large set of training
samples and the learning computational time is generally high.
To compare with the proposed method, we chose K-SVD, as it
shows promising results, using a relatively small training set.
We started with a small size problem and gradually increased
the size, until the simulation was no longer tractable for us.
We used training samples and repeated the previous
simulations with and 1024. We have presented
the running times of the learning with the proposed (OJSDS),
Sparse and K-SVD dictionary learning algorithms in Table II,
using a single core of the processor. We were unable to apply
the K-SVD algorithm, when , for its high compu-
tation time. We only used samples for OJSDS, as it
does not need a large training set. The low-complexity of our
algorithm, with respect to the other algorithms, is clearly the

Fig. 6. The frequency of selected atoms, per 8192 trials. The first 2048 atoms
are the two times frequency oversampled DCT and the last 1024 atoms are Dirac
functions.

Fig. 7. The norm error of representations of 8192 testing trials, using Nor-
malized IHT [18] and different dictionaries. The dictionaries are (a) three times
overcomplete DCT+Dirac mother dictionary, (b) the one and a half times over-
complete selected dictionary, (c) a two times frequency oversampled DCT, and
(d) the leaned sparse dictionary using the mother dictionary of (a) and method
of [10].

TABLE I
COMPUTATION TIME OF SINGLE USE SUBSELECTED

DICTIONARY AND ITS TRANSPOSE IN ms

lowest. As we increase the number of training samples while
using different window sizes in OJSDS, the computational
cost increases faster, w.r.t. the problem size, than the others.
However, when the size of training samples are equal, i.e.,

with , our proposed technique is still
25% faster than SparseDL.
We calculated the running time and the final SNR, using Nor-

malized IHT (NIHT) [18], , 32 test signals and pre-
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TABLE II
COMPUTATION TIME OF DIFFERENT DICTIONARY LEARNING/SELECTION
ALGORITHMS (IN SECONDS) WITH DIFFERENT AUDIO SIGNAL SIZES,

i.e., 256, 512, AND 1024

TABLE III
COMPUTATION TIME (IN SECONDS) AND RECONSTRUCTED SNR OF SPARSE
APPROXIMATION (IN dB), USING NIHT, DIFFERENT DICTIONARIES, AND AUDIO
SIGNAL LENGTHS, i.e., 256, 512, AND 1024. NIHT ITERATED 1000 TIMES

sented the results in Table III. This table shows that the learned
dictionary with the proposed method is slightly slower than
K-SVD dictionary, but it provides the highest SNR’s, in the
sparse approximations of audio signals. The reason for being
slower than K-SVD is that the implementation of the mother
dictionary, as an operator, is slower than, or in the same order of,
a simple matrix-vector multiplication for small size problems.
Comparing the first and third columns of Table III, we observe
that, unlike the unstructured K-SVD dictionary, the subselected
dictionaries are of the order , i.e., linear complexity with
respect to the signal size. It makes the subselected dictionaries
computationally suitable for large scale problems.

V. SUMMARY AND FUTURE WORK

We presented a new technique for dictionary selection for the
linear sparse representation, when a collection of possibly suit-
able atoms and some exemplar signals are available. The dictio-
nary selection problem is reformulated as a more general form
of the joint sparse approximation problem, when the number
of active locations in sparse coefficients is larger than the size
of signal space. As such overcomplete joint sparsity framework
has generally infinitely many solutions, the sparsity within the
active set helps to regularize the problem. It was shown that the
overcomplete joint sparse approximation problem is well-de-
fined under some conditions on the null-space of the matrix
generated by the given large set of atoms (mother dictionary).
As the objective of the introduced program is continuously dif-
ferentiable, we used a gradient mapping technique to approxi-
mately solve the problem. The introduced algorithm converges
in a weak sense (convergence to a bounded non-empty set).
We presented some synthetic data simulation result to sup-

port this hypothesis that the introduced algorithm can recover
the original dictionary. The phase plot of the dictionary recovery
is compared with two other cases, when we use other sparsity
models, namely -sparse and -joint sparse model. As the sim-
ulations with synthetic data were promising, we also did some
simulations to select a subset of a commonly used dictionary,
Curvelet and Overcomplete DCT+Dirac dictionaries, to reduce

the complexity of the sparse coding algorithm. The size of dic-
tionary learning problem is such that it cannot be handled by
the vast majority of current dictionary learning algorithms. As
we do not need to keep the dictionary in the memory and as
the dictionary-vector multiplications can be implemented effi-
ciently, the learning in the new framework is relatively easy.
The results show that we can roughly get the same image/audio
quality for a specific class of image/audio signals, when we use
a smaller dictionary than the mother dictionary.
The new overcomplete joint sparsity model seems an inter-

esting extension of the previously investigated joint sparsity
model. We have left the theoretical investigation of exact re-
covery and other sparse signal processing applications, for the
future work.
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